BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 35904479)

  • 21. Assessment of Chimeric Antigen Receptor T Cell-Associated Toxicities Using an Acute Lymphoblastic Leukemia Patient-derived Xenograft Mouse Model.
    Manriquez Roman C; Sakemura RL; Kimball BL; Jin F; Khadka RH; Adada MM; Siegler EL; Johnson AJ; Kenderian SS
    J Vis Exp; 2023 Feb; (192):. PubMed ID: 36847405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cotargeting of BCL2 with Venetoclax and MCL1 with S63845 Is Synthetically Lethal
    Prukova D; Andera L; Nahacka Z; Karolova J; Svaton M; Klanova M; Havranek O; Soukup J; Svobodova K; Zemanova Z; Tuskova D; Pokorna E; Helman K; Forsterova K; Pacheco-Blanco M; Vockova P; Berkova A; Fronkova E; Trneny M; Klener P
    Clin Cancer Res; 2019 Jul; 25(14):4455-4465. PubMed ID: 31004002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of failure of chimeric antigen receptor T-cell therapy.
    Li X; Chen W
    Curr Opin Hematol; 2019 Nov; 26(6):427-433. PubMed ID: 31577606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How I treat chronic lymphocytic leukemia after venetoclax.
    Lew TE; Tam CS; Seymour JF
    Blood; 2021 Aug; 138(5):361-369. PubMed ID: 33876212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma.
    Esteve-Arenys A; Valero JG; Chamorro-Jorganes A; Gonzalez D; Rodriguez V; Dlouhy I; Salaverria I; Campo E; Colomer D; Martinez A; Rymkiewicz G; Pérez-Galán P; Lopez-Guillermo A; Roué G
    Oncogene; 2018 Apr; 37(14):1830-1844. PubMed ID: 29353886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergy of BCL2 and histone deacetylase inhibition against leukemic cells from cutaneous T-cell lymphoma patients.
    Cyrenne BM; Lewis JM; Weed JG; Carlson KR; Mirza FN; Foss FM; Girardi M
    Blood; 2017 Nov; 130(19):2073-2083. PubMed ID: 28972015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance.
    Deng Y; Diepstraten ST; Potts MA; Giner G; Trezise S; Ng AP; Healey G; Kane SR; Cooray A; Behrens K; Heidersbach A; Kueh AJ; Pal M; Wilcox S; Tai L; Alexander WS; Visvader JE; Nutt SL; Strasser A; Haley B; Zhao Q; Kelly GL; Herold MJ
    Nat Commun; 2022 Aug; 13(1):4739. PubMed ID: 35961968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression.
    Lochmann TL; Floros KV; Naseri M; Powell KM; Cook W; March RJ; Stein GT; Greninger P; Maves YK; Saunders LR; Dylla SJ; Costa C; Boikos SA; Leverson JD; Souers AJ; Krystal GW; Harada H; Benes CH; Faber AC
    Clin Cancer Res; 2018 Jan; 24(2):360-369. PubMed ID: 29118061
    [No Abstract]   [Full Text] [Related]  

  • 29. Acquired resistance to venetoclax (ABT-199) in t(14;18) positive lymphoma cells.
    Bodo J; Zhao X; Durkin L; Souers AJ; Phillips DC; Smith MR; Hsi ED
    Oncotarget; 2016 Oct; 7(43):70000-70010. PubMed ID: 27661108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chimeric Antigen Receptor-Engineered T Cell Therapy in Lymphoma.
    Strati P; Neelapu SS
    Curr Oncol Rep; 2019 Mar; 21(5):38. PubMed ID: 30919158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Venetoclax Increases Intratumoral Effector T Cells and Antitumor Efficacy in Combination with Immune Checkpoint Blockade.
    Kohlhapp FJ; Haribhai D; Mathew R; Duggan R; Ellis PA; Wang R; Lasater EA; Shi Y; Dave N; Riehm JJ; Robinson VA; Do AD; Li Y; Orr CJ; Sampath D; Raval A; Merchant M; Bhathena A; Salem AH; Hamel KM; Leverson JD; Donawho C; Pappano WN; Uziel T
    Cancer Discov; 2021 Jan; 11(1):68-79. PubMed ID: 32887697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of venetoclax activity in precursor B-ALL by functional assessment of apoptosis signaling.
    Seyfried F; Demir S; Hörl RL; Stirnweiß FU; Ryan J; Scheffold A; Villalobos-Ortiz M; Boldrin E; Zinngrebe J; Enzenmüller S; Jenni S; Tsai YC; Bornhauser B; Fürstberger A; Kraus JM; Kestler HA; Bourquin JP; Stilgenbauer S; Letai A; Debatin KM; Meyer LH
    Cell Death Dis; 2019 Jul; 10(8):571. PubMed ID: 31358732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tipping the balance: toward rational combination therapies to overcome venetoclax resistance in mantle cell lymphoma.
    Thus YJ; Eldering E; Kater AP; Spaargaren M
    Leukemia; 2022 Sep; 36(9):2165-2176. PubMed ID: 35725771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-CD47 immunotherapy in combination with BCL-2 inhibitor to enhance anti-tumor activity in B-cell lymphoma.
    Li M; Yu H; Qi F; Ye Y; Hu D; Cao J; Wang D; Mi L; Wang Z; Ding N; Ping L; Shu S; Zhu J
    Hematol Oncol; 2022 Oct; 40(4):596-608. PubMed ID: 35477179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1.
    Teh TC; Nguyen NY; Moujalled DM; Segal D; Pomilio G; Rijal S; Jabbour A; Cummins K; Lackovic K; Blombery P; Thompson E; Ekert PG; Lessene G; Glaser SP; Huang DCS; Roberts AW; Guthridge MA; Wei AH
    Leukemia; 2018 Feb; 32(2):303-312. PubMed ID: 28751770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies.
    Guièze R; Liu VM; Rosebrock D; Jourdain AA; Hernández-Sánchez M; Martinez Zurita A; Sun J; Ten Hacken E; Baranowski K; Thompson PA; Heo JM; Cartun Z; Aygün O; Iorgulescu JB; Zhang W; Notarangelo G; Livitz D; Li S; Davids MS; Biran A; Fernandes SM; Brown JR; Lako A; Ciantra ZB; Lawlor MA; Keskin DB; Udeshi ND; Wierda WG; Livak KJ; Letai AG; Neuberg D; Harper JW; Carr SA; Piccioni F; Ott CJ; Leshchiner I; Johannessen CM; Doench J; Mootha VK; Getz G; Wu CJ
    Cancer Cell; 2019 Oct; 36(4):369-384.e13. PubMed ID: 31543463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting BCL2 with venetoclax is a promising therapeutic strategy for "double-proteinexpression" lymphoma with
    Uchida A; Isobe Y; Asano J; Uemura Y; Hoshikawa M; Takagi M; Miura I
    Haematologica; 2019 Jul; 104(7):1417-1421. PubMed ID: 30523053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ibrutinib for improved chimeric antigen receptor T-cell production for chronic lymphocytic leukemia patients.
    Fan F; Yoo HJ; Stock S; Wang L; Liu Y; Schubert ML; Wang S; Neuber B; Hückelhoven-Krauss A; Gern U; Schmitt A; Müller-Tidow C; Dreger P; Schmitt M; Sellner L
    Int J Cancer; 2021 Jan; 148(2):419-428. PubMed ID: 32683672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical experiences with venetoclax and other pro-apoptotic agents in lymphoid malignancies: lessons from monotherapy and chemotherapy combination.
    Lew TE; Seymour JF
    J Hematol Oncol; 2022 Jun; 15(1):75. PubMed ID: 35659041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies.
    Ten Hacken E; Valentin R; Regis FFD; Sun J; Yin S; Werner L; Deng J; Gruber M; Wong J; Zheng M; Gill AL; Seiler M; Smith P; Thomas M; Buonamici S; Ghia EM; Kim E; Rassenti LZ; Burger JA; Kipps TJ; Meyerson ML; Bachireddy P; Wang L; Reed R; Neuberg D; Carrasco RD; Brooks AN; Letai A; Davids MS; Wu CJ
    JCI Insight; 2018 Oct; 3(19):. PubMed ID: 30282833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.