BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 35904529)

  • 21. Artificial Intelligence and Data Mining for the Pharmacovigilance of Drug-Drug Interactions.
    Hauben M
    Clin Ther; 2023 Feb; 45(2):117-133. PubMed ID: 36732152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extracting adverse drug events from clinical Notes: A systematic review of approaches used.
    Modi S; Kasmiran KA; Mohd Sharef N; Sharum MY
    J Biomed Inform; 2024 Mar; 151():104603. PubMed ID: 38331081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Innovation in Pharmacovigilance: Use of Artificial Intelligence in Adverse Event Case Processing.
    Schmider J; Kumar K; LaForest C; Swankoski B; Naim K; Caubel PM
    Clin Pharmacol Ther; 2019 Apr; 105(4):954-961. PubMed ID: 30303528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Intelligence in Pharmacovigilance: An Introduction to Terms, Concepts, Applications, and Limitations.
    Aronson JK
    Drug Saf; 2022 May; 45(5):407-418. PubMed ID: 35579806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Key use cases for artificial intelligence to reduce the frequency of adverse drug events: a scoping review.
    Syrowatka A; Song W; Amato MG; Foer D; Edrees H; Co Z; Kuznetsova M; Dulgarian S; Seger DL; Simona A; Bain PA; Purcell Jackson G; Rhee K; Bates DW
    Lancet Digit Health; 2022 Feb; 4(2):e137-e148. PubMed ID: 34836823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adverse Drug Reaction Case Safety Practices in Large Biopharmaceutical Organizations from 2007 to 2017: An Industry Survey.
    Stergiopoulos S; Fehrle M; Caubel P; Tan L; Jebson L
    Pharmaceut Med; 2019 Dec; 33(6):499-510. PubMed ID: 31933240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial intelligence in spine care: current applications and future utility.
    Hornung AL; Hornung CM; Mallow GM; Barajas JN; Rush A; Sayari AJ; Galbusera F; Wilke HJ; Colman M; Phillips FM; An HS; Samartzis D
    Eur Spine J; 2022 Aug; 31(8):2057-2081. PubMed ID: 35347425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signals of adverse drug reactions communicated by pharmacovigilance stakeholders: protocol for a scoping review of the global literature.
    Sartori D; Aronson JK; Onakpoya IJ
    Syst Rev; 2020 Aug; 9(1):180. PubMed ID: 32791982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting medication errors in the New Zealand pharmacovigilance database: a retrospective analysis.
    Kunac DL; Tatley MV
    Drug Saf; 2011 Jan; 34(1):59-71. PubMed ID: 21142271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial Intelligence in Pharmacovigilance and COVID-19.
    Bhardwaj K; Alam R; Pandeya A; Sharma PK
    Curr Drug Saf; 2023; 18(1):5-14. PubMed ID: 35382726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explainable artificial intelligence for pharmacovigilance: What features are important when predicting adverse outcomes?
    Ward IR; Wang L; Lu J; Bennamoun M; Dwivedi G; Sanfilippo FM
    Comput Methods Programs Biomed; 2021 Nov; 212():106415. PubMed ID: 34715520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial Intelligence, Real-World Automation and the Safety of Medicines.
    Bate A; Hobbiger SF
    Drug Saf; 2021 Feb; 44(2):125-132. PubMed ID: 33026641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sorting Through the Safety Data Haystack: Using Machine Learning to Identify Individual Case Safety Reports in Social-Digital Media.
    Comfort S; Perera S; Hudson Z; Dorrell D; Meireis S; Nagarajan M; Ramakrishnan C; Fine J
    Drug Saf; 2018 Jun; 41(6):579-590. PubMed ID: 29446035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enabling pregnant women and their physicians to make informed medication decisions using artificial intelligence.
    Davidson L; Boland MR
    J Pharmacokinet Pharmacodyn; 2020 Aug; 47(4):305-318. PubMed ID: 32279157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug safety in Africa: a review of systems and resources for pharmacovigilance.
    Ndagije HB; Walusimbi D; Atuhaire J; Ampaire S
    Expert Opin Drug Saf; 2023; 22(10):891-895. PubMed ID: 37676033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LiSA: an assisted literature search pipeline for detecting serious adverse drug events with deep learning.
    Martenot V; Masdeu V; Cupe J; Gehin F; Blanchon M; Dauriat J; Horst A; Renaudin M; Girard P; Zucker JD
    BMC Med Inform Decis Mak; 2022 Dec; 22(1):338. PubMed ID: 36550485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The value of patient reporting to the pharmacovigilance system: a systematic review.
    InĂ¡cio P; Cavaco A; Airaksinen M
    Br J Clin Pharmacol; 2017 Feb; 83(2):227-246. PubMed ID: 27558545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial Intelligence in Pharmacovigilance: Scoping Points to Consider.
    Hauben M; Hartford CG
    Clin Ther; 2021 Feb; 43(2):372-379. PubMed ID: 33478803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia.
    Osborne SR; Alston LV; Bolton KA; Whelan J; Reeve E; Wong Shee A; Browne J; Walker T; Versace VL; Allender S; Nichols M; Backholer K; Goodwin N; Lewis S; Dalton H; Prael G; Curtin M; Brooks R; Verdon S; Crockett J; Hodgins G; Walsh S; Lyle DM; Thompson SC; Browne LJ; Knight S; Pit SW; Jones M; Gillam MH; Leach MJ; Gonzalez-Chica DA; Muyambi K; Eshetie T; Tran K; May E; Lieschke G; Parker V; Smith A; Hayes C; Dunlop AJ; Rajappa H; White R; Oakley P; Holliday S
    Med J Aust; 2020 Dec; 213 Suppl 11():S3-S32.e1. PubMed ID: 33314144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.