These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35904544)

  • 1. Multidrug representation learning based on pretraining model and molecular graph for drug interaction and combination prediction.
    Ren S; Yu L; Gao L
    Bioinformatics; 2022 Sep; 38(18):4387-4394. PubMed ID: 35904544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ReLMole: Molecular Representation Learning Based on Two-Level Graph Similarities.
    Ji Z; Shi R; Lu J; Li F; Yang Y
    J Chem Inf Model; 2022 Nov; 62(22):5361-5372. PubMed ID: 36302249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction.
    Zhang XC; Wu CK; Yang ZJ; Wu ZX; Yi JC; Hsieh CY; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33951729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DTI-Voodoo: machine learning over interaction networks and ontology-based background knowledge predicts drug-target interactions.
    Hinnerichs T; Hoehndorf R
    Bioinformatics; 2021 Dec; 37(24):4835-4843. PubMed ID: 34320178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MS-BACL: enhancing metabolic stability prediction through bond graph augmentation and contrastive learning.
    Wang T; Li Z; Zhuo L; Chen Y; Fu X; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38555479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D graph contrastive learning for molecular property prediction.
    Moon K; Im HJ; Kwon S
    Bioinformatics; 2022 Jan; 39(6):. PubMed ID: 37289553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGSA: protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation.
    Zhu Y; Ouyang Z; Chen W; Feng R; Chen DZ; Cao J; Wu J
    Bioinformatics; 2022 Jan; 38(2):461-468. PubMed ID: 34559177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioERP: biomedical heterogeneous network-based self-supervised representation learning approach for entity relationship predictions.
    Wang X; Yang Y; Li K; Li W; Li F; Peng S
    Bioinformatics; 2021 Dec; 37(24):4793-4800. PubMed ID: 34329382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations.
    Wang J; Liu X; Shen S; Deng L; Liu H
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug-drug interactions.
    Nguyen DA; Nguyen CH; Petschner P; Mamitsuka H
    Bioinformatics; 2022 Jun; 38(Suppl 1):i333-i341. PubMed ID: 35758803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFinder: a novel end-to-end graph embedding-based method to identify drug-food interactions.
    Wang T; Yang J; Xiao Y; Wang J; Wang Y; Zeng X; Wang Y; Peng J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36579885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction.
    Jin Y; Lu J; Shi R; Yang Y
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceiver CPI: a nested cross-attention network for compound-protein interaction prediction.
    Nguyen NQ; Jang G; Kim H; Kang J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36416124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-dependent graph neural networks for molecular property prediction.
    Ma H; Bian Y; Rong Y; Huang W; Xu T; Xie W; Ye G; Huang J
    Bioinformatics; 2022 Mar; 38(7):2003-2009. PubMed ID: 35094072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adversarial dense graph convolutional networks for single-cell classification.
    Wang K; Li Z; You ZH; Han P; Nie R
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36661313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MUFFIN: multi-scale feature fusion for drug-drug interaction prediction.
    Chen Y; Ma T; Yang X; Wang J; Song B; Zeng X
    Bioinformatics; 2021 Sep; 37(17):2651-2658. PubMed ID: 33720331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3DGT-DDI: 3D graph and text based neural network for drug-drug interaction prediction.
    He H; Chen G; Yu-Chian Chen C
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35511112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting synergistic anticancer drug combination based on low-rank global attention mechanism and bilinear predictor.
    Gan Y; Huang X; Guo W; Yan C; Zou G
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37812255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.