These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35904558)

  • 1. BLSSpeller to discover novel regulatory motifs in maize.
    Rahmani RS; Decap D; Fostier J; Marchal K
    DNA Res; 2022 Jun; 29(4):. PubMed ID: 35904558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements.
    De Witte D; Van de Velde J; Decap D; Van Bel M; Audenaert P; Demeester P; Dhoedt B; Vandepoele K; Fostier J
    Bioinformatics; 2015 Dec; 31(23):3758-66. PubMed ID: 26254488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promzea: a pipeline for discovery of co-regulatory motifs in maize and other plant species and its application to the anthocyanin and phlobaphene biosynthetic pathways and the Maize Development Atlas.
    Liseron-Monfils C; Lewis T; Ashlock D; McNicholas PD; Fauteux F; Strömvik M; Raizada MN
    BMC Plant Biol; 2013 Mar; 13():42. PubMed ID: 23497159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
    Castro-Mondragon JA; Rioualen C; Contreras-Moreira B; van Helden J
    Methods Mol Biol; 2016; 1482():297-322. PubMed ID: 27557775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data.
    Huber BR; Bulyk ML
    BMC Bioinformatics; 2006 Apr; 7():229. PubMed ID: 16643658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding de novo methylated DNA motifs.
    Ngo V; Wang M; Wang W
    Bioinformatics; 2019 Sep; 35(18):3287-3293. PubMed ID: 30726880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning promoter boundaries improves regulatory motif discovery in nonmodel plants: the peach example.
    Ksouri N; Castro-Mondragón JA; Montardit-Tarda F; van Helden J; Contreras-Moreira B; Gogorcena Y
    Plant Physiol; 2021 Apr; 185(3):1242-1258. PubMed ID: 33744946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors.
    Yu CP; Chen SC; Chang YM; Liu WY; Lin HH; Lin JJ; Chen HJ; Lu YJ; Wu YH; Lu MY; Lu CH; Shih AC; Ku MS; Shiu SH; Wu SH; Li WH
    Proc Natl Acad Sci U S A; 2015 May; 112(19):E2477-86. PubMed ID: 25918418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.
    Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q
    BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.
    Tong H; Schliekelman P; Mrázek J
    BMC Genomics; 2017 Jan; 18(1):27. PubMed ID: 28056763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory motifs identified from a maize developmental coexpression network.
    Downs GS; Liseron-Monfils C; Lukens LN
    Genome; 2014 Mar; 57(3):181-4. PubMed ID: 24884692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs.
    Zheng Y; Li X; Hu H
    Nucleic Acids Res; 2015 Jan; 43(1):74-83. PubMed ID: 25505144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel motif patterns to decipher the promoter architecture of co-expressed genes in Arabidopsis thaliana.
    López Y; Patil A; Nakai K
    BMC Syst Biol; 2013 Oct; 7 Suppl 3(Suppl 3):S10. PubMed ID: 24555803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of stress responsive DNA regulatory motifs in Arabidopsis.
    Ma S; Bachan S; Porto M; Bohnert HJ; Snyder M; Dinesh-Kumar SP
    PLoS One; 2012; 7(8):e43198. PubMed ID: 22912824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods in comparative genomics: genome correspondence, gene identification and regulatory motif discovery.
    Kellis M; Patterson N; Birren B; Berger B; Lander ES
    J Comput Biol; 2004; 11(2-3):319-55. PubMed ID: 15285895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide prediction of nucleosome occupancy in maize reveals plant chromatin structural features at genes and other elements at multiple scales.
    Fincher JA; Vera DL; Hughes DD; McGinnis KM; Dennis JH; Bass HW
    Plant Physiol; 2013 Jun; 162(2):1127-41. PubMed ID: 23572549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The native cistrome and sequence motif families of the maize ear.
    Savadel SD; Hartwig T; Turpin ZM; Vera DL; Lung PY; Sui X; Blank M; Frommer WB; Dennis JH; Zhang J; Bass HW
    PLoS Genet; 2021 Aug; 17(8):e1009689. PubMed ID: 34383745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of Arabidopsis and maize: prospects and limitations.
    Brendel V; Kurtz S; Walbot V
    Genome Biol; 2002; 3(3):REVIEWS1005. PubMed ID: 11897028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.