These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35904978)

  • 1. Hybrid Graphene-Supported Aluminum Plasmonics.
    Elibol K; van Aken PA
    ACS Nano; 2022 Aug; 16(8):11931-11943. PubMed ID: 35904978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering the Evolution of Low-Energy Plasmons in Nanopatterned Aluminum Plasmonics on Graphene.
    Elibol K; van Aken PA
    Nano Lett; 2022 Jul; 22(14):5825-5831. PubMed ID: 35820031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale mapping of shifts in dark plasmon modes in sub 10 nm aluminum nanoantennas.
    Elibol K; Downing C; Hobbs RG
    Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35944508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative electron and photon excitation of localized surface plasmon resonance in lithographic gold arrays for enhanced Raman scattering.
    Zeng Y; Madsen SJ; Yankovich AB; Olsson E; Sinclair R
    Nanoscale; 2020 Dec; 12(46):23768-23779. PubMed ID: 33232431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topologically Enclosed Aluminum Voids as Plasmonic Nanostructures.
    Zhu Y; Nakashima PNH; Funston AM; Bourgeois L; Etheridge J
    ACS Nano; 2017 Nov; 11(11):11383-11392. PubMed ID: 29094925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.
    Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK
    Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance.
    Li YF; Dong FX; Chen Y; Zhang XL; Wang L; Bi YG; Tian ZN; Liu YF; Feng J; Sun HB
    Sci Rep; 2016 Nov; 6():37190. PubMed ID: 27872494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Resonances in the Transmission of Surface Plasmon Polaritons between Nanostructures.
    Johns P; Yu K; Devadas MS; Hartland GV
    ACS Nano; 2016 Mar; 10(3):3375-81. PubMed ID: 26866536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging Energy Transfer in Pt-Decorated Au Nanoprisms via Electron Energy-Loss Spectroscopy.
    Griffin S; Montoni NP; Li G; Straney PJ; Millstone JE; Masiello DJ; Camden JP
    J Phys Chem Lett; 2016 Oct; 7(19):3825-3832. PubMed ID: 27617864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Surface-Enhanced Raman Scattering: Can STEM/EELS Image Electromagnetic Hot Spots?
    Mirsaleh-Kohan N; Iberi V; Simmons PD; Bigelow NW; Vaschillo A; Rowland MM; Best MD; Pennycook SJ; Masiello DJ; Guiton BS; Camden JP
    J Phys Chem Lett; 2012 Aug; 3(16):2303-9. PubMed ID: 26295787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.
    Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R
    ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer.
    Sheikholeslami S; Jun YW; Jain PK; Alivisatos AP
    Nano Lett; 2010 Jul; 10(7):2655-60. PubMed ID: 20536212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of suspended metal-dielectric-metal plasmonic nanostructures.
    Dong Z; Bosman M; Zhu D; Goh XM; Yang JK
    Nanotechnology; 2014 Apr; 25(13):135303. PubMed ID: 24598115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nearfield excited state imaging of bonding and antibonding plasmon modes in nanorod dimers via stimulated electron energy gain spectroscopy.
    Collette R; Garfinkel DA; Rack PD
    J Chem Phys; 2020 Jul; 153(4):044711. PubMed ID: 32752671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.
    Bellido EP; Rossouw D; Botton GA
    Microsc Microanal; 2014 Jun; 20(3):767-78. PubMed ID: 24690472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasmall Designed Plasmon Resonators by Fused Colloidal Nanopatterning.
    Asbahi M; Mahfoud Z; Dolmanan SB; Wu W; Dong Z; Wang F; Saifullah MSM; Tripathy S; Chong KSL; Bosman M
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45207-45213. PubMed ID: 31694369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductivity models for electron energy loss spectroscopy of graphene in a scanning transmission electron microscope with high energy resolution.
    Lyon K; Mowbray DJ; Miskovic ZL
    Ultramicroscopy; 2020 Jul; 214():113012. PubMed ID: 32413682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials.
    Liu B; Tang C; Chen J; Xie N; Tang H; Zhu X; Park GS
    Nanoscale Res Lett; 2018 May; 13(1):153. PubMed ID: 29767294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.