BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35905038)

  • 1. Tracked 3D ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry.
    Krönke M; Eilers C; Dimova D; Köhler M; Buschner G; Schweiger L; Konstantinidou L; Makowski M; Nagarajah J; Navab N; Weber W; Wendler T
    PLoS One; 2022; 17(7):e0268550. PubMed ID: 35905038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiautomated thyroid volumetry using 3D CT: prospective comparison with measurements obtained using 2D ultrasound, 2D CT, and water displacement method of specimen.
    Lee SJ; Chong S; Kang KH; Hur J; Hong BW; Kim HJ; Kim SJ
    AJR Am J Roentgenol; 2014 Nov; 203(5):W525-32. PubMed ID: 25341167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound.
    Andermann P; Schlögl S; Mäder U; Luster M; Lassmann M; Reiners C
    Nuklearmedizin; 2007; 46(1):1-7. PubMed ID: 17299648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability.
    Opfer R; Krüger J; Spies L; Ostwaldt AC; Kitzler HH; Schippling S; Buchert R
    Eur Radiol; 2023 Mar; 33(3):1852-1861. PubMed ID: 36264314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel thyroid phantom for ultrasound volumetry: determination of intraobserver and interobserver variability.
    Schlögl S; Andermann P; Luster M; Reiners C; Lassmann M
    Thyroid; 2006 Jan; 16(1):41-6. PubMed ID: 16487012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla.
    Fallah F; Machann J; Martirosian P; Bamberg F; Schick F; Yang B
    MAGMA; 2017 Apr; 30(2):139-151. PubMed ID: 27638089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation and location learning of neonatal cerebral ventricles in 3D ultrasound data combining CNN and CPPN.
    Martin M; Sciolla B; Sdika M; Quétin P; Delachartre P
    Comput Biol Med; 2021 Apr; 131():104268. PubMed ID: 33639351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic upper airway segmentation in static and dynamic MRI via anatomy-guided convolutional neural networks.
    Xie L; Udupa JK; Tong Y; Torigian DA; Huang Z; Kogan RM; Wootton D; Choy KR; Sin S; Wagshul ME; Arens R
    Med Phys; 2022 Jan; 49(1):324-342. PubMed ID: 34773260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetry of fetal hearts using 3D real-time matrix echocardiography - in vitro validation experiments and 3D echocardiographic studies in fetuses.
    Herberg U; Lück S; Steinweg B; Brand M; Knies R; Geipel A; Trier HG; Breuer J
    Ultraschall Med; 2011 Feb; 32(1):46-53. PubMed ID: 20614413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based ultrasonic dynamic video detection and segmentation of thyroid gland and its surrounding cervical soft tissues.
    Luo H; Ma L; Wu X; Tan G; Zhu H; Wu S; Li K; Yang Y; Li S
    Med Phys; 2022 Jan; 49(1):382-392. PubMed ID: 34730231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the fetal thymus gland: Comparing MRI-acquired thymus volumes with 2D ultrasound measurements.
    Myers R; Hutter J; Matthew J; Zhang T; Uus A; Lloyd D; Egloff A; Deprez M; Nanda S; Rutherford M; Story L
    Eur J Obstet Gynecol Reprod Biol; 2021 Sep; 264():1-7. PubMed ID: 34246829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants.
    Gontard LC; Pizarro J; Sanz-Peña B; Lubián López SP; Benavente-Fernández I
    Sci Rep; 2021 Jan; 11(1):567. PubMed ID: 33436974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Convolutional Neural Network for Prostate MRI Segmentation and Comparison of Prostate Volume Measurements by Use of Artificial Neural Network and Ellipsoid Formula.
    Lee DK; Sung DJ; Kim CS; Heo Y; Lee JY; Park BJ; Kim MJ
    AJR Am J Roentgenol; 2020 Jun; 214(6):1229-1238. PubMed ID: 32208009
    [No Abstract]   [Full Text] [Related]  

  • 16. A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI.
    Winther H; Hundt C; Ringe KI; Wacker FK; Schmidt B; Jürgens J; Haimerl M; Beyer LP; Stroszczynski C; Wiggermann P; Verloh N
    Rofo; 2021 Mar; 193(3):305-314. PubMed ID: 32882724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.
    Ma J; Wu F; Jiang T; Zhao Q; Kong D
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1895-1910. PubMed ID: 28762196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraobserver and Interobserver Variability in Ultrasound Measurements of Thyroid Nodules.
    Lee HJ; Yoon DY; Seo YL; Kim JH; Baek S; Lim KJ; Cho YK; Yun EJ
    J Ultrasound Med; 2018 Jan; 37(1):173-178. PubMed ID: 28736947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of three-dimensional ultrasound for thyroid volumetry.
    Schlögl S; Werner E; Lassmann M; Terekhova J; Muffert S; Seybold S; Reiners C
    Thyroid; 2001 Jun; 11(6):569-74. PubMed ID: 11442004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning.
    Hesse LS; Aliasi M; Moser F; ; Haak MC; Xie W; Jenkinson M; Namburete AIL
    Neuroimage; 2022 Jul; 254():119117. PubMed ID: 35331871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.