These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35905060)

  • 21. Effects of Eye Vergence and Accommodation on Interactions with Content on an AR Magic-lens Display and its Surroundings.
    Lugtenberg G; Copic Pucihar K; Kljun M; Sawabe T; Fujimoto Y; Kanbara M; Kato H
    IEEE Trans Vis Comput Graph; 2024 May; PP():. PubMed ID: 38771678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing Desktop vs. Mobile Interaction for the Creation of Pervasive Augmented Reality Experiences.
    Madeira T; Marques B; Neves P; Dias P; Santos BS
    J Imaging; 2022 Mar; 8(3):. PubMed ID: 35324634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Drop Shadows for Virtual Object Grasping in Augmented Reality.
    Al-Kalbani M; Frutos-Pascual M; Williams I
    IEEE Comput Graph Appl; 2020; 40(4):10-25. PubMed ID: 32365021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parallax Free Registration for Augmented Reality Optical See-Through Displays in the Peripersonal Space.
    Ferrari V; Cattari N; Fontana U; Cutolo F
    IEEE Trans Vis Comput Graph; 2022 Mar; 28(3):1608-1618. PubMed ID: 32881688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensible visualization for augmented reality.
    Kalkofen D; Mendez E; Schmalstieg D
    IEEE Trans Vis Comput Graph; 2009; 15(2):193-204. PubMed ID: 19147885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: a review.
    Baus O; Bouchard S
    Front Hum Neurosci; 2014; 8():112. PubMed ID: 24624073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Perceptual Color-Matching Method for Examining Color Blending in Augmented Reality Head-Up Display Graphics.
    Gabbard JL; Smith M; Merenda C; Burnett G; Large DR
    IEEE Trans Vis Comput Graph; 2022 Aug; 28(8):2834-2851. PubMed ID: 33315569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using augmented reality to cue obstacles for people with low vision.
    Fox DR; Ahmadzada A; Wang CT; Azenkot S; Chu MA; Manduchi R; Cooper EA
    Opt Express; 2023 Feb; 31(4):6827-6848. PubMed ID: 36823931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Survey of Calibration Methods for Optical See-Through Head-Mounted Displays.
    Grubert J; Itoh Y; Moser K; Swan JE
    IEEE Trans Vis Comput Graph; 2018 Sep; 24(9):2649-2662. PubMed ID: 28961115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometric calibration of head-mounted displays and its effects on distance estimation.
    Kellner F; Bolte B; Bruder G; Rautenberg U; Steinicke F; Lappe M; Koch R
    IEEE Trans Vis Comput Graph; 2012 Apr; 18(4):589-96. PubMed ID: 22402686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing Depth Perception in VR and Video See-Through AR: A Comparison on Distance Judgment, Performance, and Preference.
    Westermeier F; Brubach L; Wienrich C; Latoschik ME
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2140-2150. PubMed ID: 38437131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Audio-Based 3D Spatial Guidance AR System for Blind Users.
    Coughlan JM; Biggs B; Rivière MA; Shen H
    Comput Help People Spec Needs; 2020 Sep; 12376():475-484. PubMed ID: 33225323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Impact of Focus and Context Visualization Techniques on Depth Perception in Optical See-Through Head-Mounted Displays.
    Martin-Gomez A; Weiss J; Keller A; Eck U; Roth D; Navab N
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4156-4171. PubMed ID: 33979287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Egocentric depth judgments in optical, see-through augmented reality.
    Swan JE; Jones A; Kolstad E; Livingston MA; Smallman HS
    IEEE Trans Vis Comput Graph; 2007; 13(3):429-42. PubMed ID: 17356211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing Distraction Potential of Augmented Reality Head-Up Displays for Vehicle Drivers.
    Kim H; Gabbard JL
    Hum Factors; 2022 Aug; 64(5):852-865. PubMed ID: 31063399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of augmented reality and virtual reality for visual field expansion and visual acuity improvement in low vision rehabilitation: a systematic review.
    Pur DR; Lee-Wing N; Bona MD
    Graefes Arch Clin Exp Ophthalmol; 2023 Jun; 261(6):1743-1755. PubMed ID: 36633669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. User's image perception improved strategy and application of augmented reality systems in smart medical care: A review.
    Jiang J; Zhang J; Sun J; Wu D; Xu S
    Int J Med Robot; 2023 Jun; 19(3):e2497. PubMed ID: 36629798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Communication of Hazards in Mixed-Reality Telerobotic Systems: The Usage of Naturalistic Avoidance Cues in Driving Tasks.
    Valner R; Dydynski JM; Cho S; Kruusamäe K
    Hum Factors; 2021 Jun; 63(4):619-634. PubMed ID: 32048884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.