These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35905066)

  • 1. Varifocal Concave-Convex Lens Using Viscoelastic Gel and Ultrasound Vibration.
    Hashimoto S; Harada Y; Nakamura K; Iwase T; Onaka J; Matsukawa M; Koyama D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Sep; 69(9):2703-2710. PubMed ID: 35905066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Varifocal optical lens using ultrasonic vibration and thixotropic gel.
    Sakata D; Iwase T; Onaka J; Koyama D; Matsukawa M
    J Acoust Soc Am; 2021 Jun; 149(6):3954. PubMed ID: 34241470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency characteristics of an ultrasonic varifocal liquid crystal lens.
    Kuroda Y; Harada Y; Emoto A; Matsukawa M; Koyama D
    Appl Opt; 2024 Mar; 63(9):2256-2262. PubMed ID: 38568580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lab-on-phone instrument with varifocal microscope via a liquid-actuated aspheric lens (LAL).
    Fuh YK; Lai ZH; Kau LH; Huang HJ
    PLoS One; 2017; 12(6):e0179389. PubMed ID: 28650971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic optical lens array with variable focal length and pitch.
    Koyama D; Hatanaka M; Nakamura K; Matsukawa M
    Opt Lett; 2012 Dec; 37(24):5256-8. PubMed ID: 23258070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the Surface Profile of a Thixotropic Fluid With Ultrasound.
    Masuda K; Komatsu H; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):117-123. PubMed ID: 31449013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the surface profile of powder using the flexural vibration of a V-shaped plate.
    Nakaoka N; Komatsu H; Kobayashi R; Matsukawa M; Koyama D
    Ultrasonics; 2023 Jan; 127():106848. PubMed ID: 36126438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of an optical lens array using ultraviolet light and ultrasonication.
    Taniguchi S; Koyama D; Nakamura K; Matsukawa M
    Ultrasonics; 2015 Apr; 58():22-6. PubMed ID: 25497498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):596-602. PubMed ID: 21429850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional variable-focus liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2720-6. PubMed ID: 23443707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling and characterisation of a ultrasound-actuated needle for improved visibility in ultrasound-guided regional anaesthesia and tissue biopsy.
    Kuang Y; Hilgers A; Sadiq M; Cochran S; Corner G; Huang Z
    Ultrasonics; 2016 Jul; 69():38-46. PubMed ID: 27022669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triboelectric effect-modulated varifocal liquid lens.
    Fang C; Cao Y; Jiang D; Tian J; Zhang C
    Microsyst Nanoeng; 2020; 6():61. PubMed ID: 34567672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple-structured capillary-force-dominated tunable-focus liquid lens based on the higher-order-harmonic resonance of a piezoelectric ring transducer.
    Feng GH; Liu JH
    Appl Opt; 2013 Feb; 52(4):829-37. PubMed ID: 23385925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverging Polymer Acoustic Lens Design for High-Resolution Row-Column Array Ultrasound Transducers.
    Audoin M; Salari A; Tomov BG; Pedersen KF; Jensen JA; Thomsen EV
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):202-213. PubMed ID: 37878425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.
    Liu Y; Chen W; Liu J; Shi S
    PLoS One; 2010 Apr; 5(4):e10020. PubMed ID: 20368809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focal position control of ultrasonic transducer made of plano-concave form piezoelectric vibrator.
    Kim J; Kim M
    Ultrasonics; 2022 Apr; 121():106668. PubMed ID: 35016081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characteristics of a Maxwell force-driven liquid lens.
    Song X; Zhang H; Zhang Z; Zhao R; Jia D; Liu T
    Opt Express; 2021 Mar; 29(6):8323-8332. PubMed ID: 33820280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.