These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35905319)

  • 21. Modifying the thickness, pore size, and composition of diatom frustule in Pinnularia sp. with Al
    Soleimani M; Rutten L; Maddala SP; Wu H; Eren ED; Mezari B; Schreur-Piet I; Friedrich H; van Benthem RATM
    Sci Rep; 2020 Nov; 10(1):19498. PubMed ID: 33177559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From diatoms to silica-based biohybrids.
    Nassif N; Livage J
    Chem Soc Rev; 2011 Feb; 40(2):849-859. PubMed ID: 21173981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence correlation spectroscopy to study diffusion through diatom nanopores.
    Bhatta H; Enderlein J; Rosengarten G
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6760-6. PubMed ID: 19908596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica.
    Ren F; Campbell J; Wang X; Rorrer GL; Wang AX
    Opt Express; 2013 Jul; 21(13):15308-13. PubMed ID: 23842317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process.
    Jeffryes C; Gutu T; Jiao J; Rorrer GL
    ACS Nano; 2008 Oct; 2(10):2103-12. PubMed ID: 19206457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis.
    Goessling JW; Su Y; Cartaxana P; Maibohm C; Rickelt LF; Trampe ECL; Walby SL; Wangpraseurt D; Wu X; Ellegaard M; Kühl M
    New Phytol; 2018 Jul; 219(1):122-134. PubMed ID: 29672846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diatom-based label-free optical biosensor for biomolecules.
    Viji S; Anbazhagi M; Ponpandian N; Mangalaraj D; Jeyanthi S; Santhanam P; Devi AS; Viswanathan C
    Appl Biochem Biotechnol; 2014 Oct; 174(3):1166-73. PubMed ID: 24989453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infrared Microspectroscopy of Bionanomaterials (Diatoms) with Careful Evaluation of Void Effects.
    Alipour L; Hamamoto M; Nakashima S; Harui R; Furiki M; Oku O
    Appl Spectrosc; 2016 Mar; 70(3):427-42. PubMed ID: 26823543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of porous silica nanostructures in diatoms isolated from Kurichi and Sulur lakes of Coimbatore, India using field emission scanning electron microscopy.
    N S; R S
    Micron; 2015 Dec; 79():24-8. PubMed ID: 26296232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prescribing diatom morphology: toward genetic engineering of biological nanomaterials.
    Kröger N
    Curr Opin Chem Biol; 2007 Dec; 11(6):662-9. PubMed ID: 17991447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Luminescence properties of a nanoporous freshwater diatom.
    Goswami B; Choudhury A; Buragohain AK
    Luminescence; 2012; 27(1):16-9. PubMed ID: 21618682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diatoms: self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes.
    Yang W; Lopez PJ; Rosengarten G
    Analyst; 2011 Jan; 136(1):42-53. PubMed ID: 20931107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functionalization of the living diatom Thalassiosira weissflogii with thiol moieties.
    Lang Y; del Monte F; Collins L; Rodriguez BJ; Thompson K; Dockery P; Finn DP; Pandit A
    Nat Commun; 2013; 4():2683. PubMed ID: 24177724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wavelength and orientation dependent capture of light by diatom frustule nanostructures.
    Romann J; Valmalette JC; Chauton MS; Tranell G; Einarsrud MA; Vadstein O
    Sci Rep; 2015 Dec; 5():17403. PubMed ID: 26627680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana: insights into silica structure formation.
    Frigeri LG; Radabaugh TR; Haynes PA; Hildebrand M
    Mol Cell Proteomics; 2006 Jan; 5(1):182-93. PubMed ID: 16207702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter.
    De Stefano L; Lamberti A; Rotiroti L; De Stefano M
    Acta Biomater; 2008 Jan; 4(1):126-30. PubMed ID: 17980684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanopatterned protein microrings from a diatom that direct silica morphogenesis.
    Scheffel A; Poulsen N; Shian S; Kröger N
    Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3175-80. PubMed ID: 21300899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly-porous diatom biosilica stationary phase for thin-layer chromatography.
    Kraai JA; Rorrer GL; Wang AX
    J Chromatogr A; 2019 Apr; 1591():162-170. PubMed ID: 30683526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new calcium binding glycoprotein family constitutes a major diatom cell wall component.
    Kröger N; Bergsdorf C; Sumper M
    EMBO J; 1994 Oct; 13(19):4676-83. PubMed ID: 7925309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diatom Frustule Silica Exhibits Superhydrophilicity and Superhemophilicity.
    Lee J; Lee HA; Shin M; Juang LJ; Kastrup CJ; Go GM; Lee H
    ACS Nano; 2020 Apr; 14(4):4755-4766. PubMed ID: 32207961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.