These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35905370)

  • 21. Piezo-deformable mirrors for active mode matching in advanced LIGO.
    Srivastava V; Mansell G; Makarem C; Noh M; Abbott R; Ballmer S; Billingsley G; Brooks A; Cao HT; Fritschel P; Griffith D; Jia W; Kasprzack M; MacInnis M; Ng S; Sanchez L; Torrie C; Veitch P; Matichard F
    Opt Express; 2022 Mar; 30(7):10491-10501. PubMed ID: 35473014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermally controlled optical resonator for vacuum squeezed states separation.
    Nguyen C; Bréelle E; Barsuglia M; Capocasa E; De Laurentis M; Sequino V; Sorrentino F
    Appl Opt; 2022 Jun; 61(17):5226-5236. PubMed ID: 36256205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Squeezed-Light Interferometry on a Cryogenically Cooled Micromechanical Membrane.
    Kleybolte L; Gewecke P; Sawadsky A; Korobko M; Schnabel R
    Phys Rev Lett; 2020 Nov; 125(21):213601. PubMed ID: 33275013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling.
    Thüring A; Gräf C; Vahlbruch H; Mehmet M; Danzmann K; Schnabel R
    Opt Lett; 2009 Mar; 34(6):824-6. PubMed ID: 19282945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overcoming the Standard Quantum Limit in Gravitational Wave Detectors Using Spin Systems with a Negative Effective Mass.
    Khalili FY; Polzik ES
    Phys Rev Lett; 2018 Jul; 121(3):031101. PubMed ID: 30085801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Squeezed light at 2128  nm for future gravitational-wave observatories.
    Darsow-Fromm C; Gurs J; Schnabel R; Steinlechner S
    Opt Lett; 2021 Dec; 46(23):5850-5853. PubMed ID: 34851906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Squeezed light for advanced gravitational wave detectors and beyond.
    Oelker E; Barsotti L; Dwyer S; Sigg D; Mavalvala N
    Opt Express; 2014 Aug; 22(17):21106-21. PubMed ID: 25321310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer.
    Vahlbruch H; Chelkowski S; Hage B; Franzen A; Danzmann K; Schnabel R
    Phys Rev Lett; 2005 Nov; 95(21):211102. PubMed ID: 16384128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities.
    Gräf C; Thüring A; Vahlbruch H; Danzmann K; Schnabel R
    Opt Express; 2013 Mar; 21(5):5287-99. PubMed ID: 23482100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent control of vacuum squeezing in the gravitational-wave detection band.
    Vahlbruch H; Chelkowski S; Hage B; Franzen A; Danzmann K; Schnabel R
    Phys Rev Lett; 2006 Jul; 97(1):011101. PubMed ID: 16907363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase-sensitive manipulation of squeezed vacuum via a dual-recycled Michelson interferometer.
    Li W; Peng Y; Yu X; Chen L; Zheng Y
    Opt Express; 2021 Oct; 29(21):34826-34834. PubMed ID: 34809263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Squeezed vacuum states of light for gravitational wave detectors.
    Barsotti L; Harms J; Schnabel R
    Rep Prog Phys; 2019 Jan; 82(1):016905. PubMed ID: 29569572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum correlations between light and the kilogram-mass mirrors of LIGO.
    Yu H; McCuller L; Tse M; Kijbunchoo N; Barsotti L; Mavalvala N;
    Nature; 2020 Jul; 583(7814):43-47. PubMed ID: 32612226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Demonstration of a quantum-enhanced fiber Sagnac interferometer.
    Mehmet M; Eberle T; Steinlechner S; Vahlbruch H; Schnabel R
    Opt Lett; 2010 May; 35(10):1665-7. PubMed ID: 20479843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss-tolerant and quantum-enhanced interferometer by reversed squeezing processes.
    Tian L; Yao W; Wu Y; Wang Q; Shen H; Zheng Y; Peng K
    Opt Lett; 2023 Aug; 48(15):3909-3912. PubMed ID: 37527080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation.
    Huang W; Liang X; Zhu B; Yan Y; Yuan CH; Zhang W; Chen LQ
    Phys Rev Lett; 2023 Feb; 130(7):073601. PubMed ID: 36867793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.
    Ast S; Samblowski A; Mehmet M; Steinlechner S; Eberle T; Schnabel R
    Opt Lett; 2012 Jun; 37(12):2367-9. PubMed ID: 22739910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cavity enhanced parametric homodyne detection of a squeezed quantum comb.
    Tian Y; Sun X; Wang Y; Li Q; Tian L; Zheng Y
    Opt Lett; 2022 Feb; 47(3):533-536. PubMed ID: 35103674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Demonstration of interferometer enhancement through EPR entanglement.
    Südbeck J; Steinlechner S; Korobko M; Schnabel R
    Nat Photonics; 2020 Apr; 14(4):240-244. PubMed ID: 32231708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.