BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 35905390)

  • 1. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology.
    Tiffany AS; Harley BAC
    Adv Healthc Mater; 2022 Oct; 11(19):e2200471. PubMed ID: 35905390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging IGF-I uptake in growth plate cartilage using in vivo multiphoton microscopy.
    Serrat MA; Ion G
    J Appl Physiol (1985); 2017 Nov; 123(5):1101-1109. PubMed ID: 28798204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signalling molecules and growth factors for tissue engineering of cartilage-what can we learn from the growth plate?
    Brochhausen C; Lehmann M; Halstenberg S; Meurer A; Klaus G; Kirkpatrick CJ
    J Tissue Eng Regen Med; 2009 Aug; 3(6):416-29. PubMed ID: 19575393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connective tissue growth factor mRNA expression pattern in cartilages is associated with their type I collagen expression.
    Fukunaga T; Yamashiro T; Oya S; Takeshita N; Takigawa M; Takano-Yamamoto T
    Bone; 2003 Dec; 33(6):911-8. PubMed ID: 14678850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of matrix metalloproteinases, (MMPs) their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeletal maturation.
    Haeusler G; Walter I; Helmreich M; Egerbacher M
    Calcif Tissue Int; 2005 May; 76(5):326-35. PubMed ID: 15868281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SOXC Transcription Factors Induce Cartilage Growth Plate Formation in Mouse Embryos by Promoting Noncanonical WNT Signaling.
    Kato K; Bhattaram P; Penzo-Méndez A; Gadi A; Lefebvre V
    J Bone Miner Res; 2015 Sep; 30(9):1560-71. PubMed ID: 25761772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression profiling of mouse articular and growth plate cartilage.
    Yamane S; Cheng E; You Z; Reddi AH
    Tissue Eng; 2007 Sep; 13(9):2163-73. PubMed ID: 17518732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of partial growth arrest using an in vitro-generated scaffold-free tissue-engineered construct derived from rabbit synovial mesenchymal stem cells.
    Yoshida K; Higuchi C; Nakura A; Nakamura N; Yoshikawa H
    J Pediatr Orthop; 2012; 32(3):314-21. PubMed ID: 22411340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 8-Nitro-cGMP promotes bone growth through expansion of growth plate cartilage.
    Hoshino M; Kaneko K; Miyamoto Y; Yoshimura K; Suzuki D; Akaike T; Sawa T; Ida T; Fujii S; Ihara H; Tanaka J; Tsukuura R; Chikazu D; Mishima K; Baba K; Kamijo R
    Free Radic Biol Med; 2017 Sep; 110():63-71. PubMed ID: 28559051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Tissue engineering of cartilage and bone : growth factors and signaling molecules].
    Brochhausen C; Lehmann M; Zehbe R; Watzer B; Grad S; Meurer A; Kirkpatrick CJ
    Orthopade; 2009 Nov; 38(11):1053-62. PubMed ID: 19851750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ift88 regulates Hedgehog signaling, Sfrp5 expression, and β-catenin activity in post-natal growth plate.
    Chang CF; Serra R
    J Orthop Res; 2013 Mar; 31(3):350-6. PubMed ID: 23034798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering growing tissues.
    Alsberg E; Anderson KW; Albeiruti A; Rowley JA; Mooney DJ
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12025-30. PubMed ID: 12218178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy.
    Vinatier C; Bouffi C; Merceron C; Gordeladze J; Brondello JM; Jorgensen C; Weiss P; Guicheux J; Noël D
    Curr Stem Cell Res Ther; 2009 Dec; 4(4):318-29. PubMed ID: 19804369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proepithelin stimulates growth plate chondrogenesis via nuclear factor-kappaB-p65-dependent mechanisms.
    Wu S; Zang W; Li X; Sun H
    J Biol Chem; 2011 Jul; 286(27):24057-67. PubMed ID: 21566130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genes of importance in the hormonal regulation of growth plate cartilage.
    Chagin AS; Sävendahl L
    Horm Res; 2009 Apr; 71 Suppl 2():41-7. PubMed ID: 19407496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Mouse Growth Plate and Articular Chondrocytes for Primary Cultures.
    Haseeb A; Lefebvre V
    Methods Mol Biol; 2021; 2245():39-51. PubMed ID: 33315194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal cleavage of chondromodulin-I in growth-plate cartilage at the hypertrophic and calcified zones during bone development.
    Miura S; Kondo J; Takimoto A; Sano-Takai H; Guo L; Shukunami C; Tanaka H; Hiraki Y
    PLoS One; 2014; 9(4):e94239. PubMed ID: 24710035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Tunable, Three-Dimensional In Vitro Culture Model of Growth Plate Cartilage Using Alginate Hydrogel Scaffolds.
    Erickson AG; Laughlin TD; Romereim SM; Sargus-Patino CN; Pannier AK; Dudley AT
    Tissue Eng Part A; 2018 Jan; 24(1-2):94-105. PubMed ID: 28525313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal analysis of rat growth plates: cessation of growth with age despite presence of a physis.
    Roach HI; Mehta G; Oreffo RO; Clarke NM; Cooper C
    J Histochem Cytochem; 2003 Mar; 51(3):373-83. PubMed ID: 12588965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrins and extracellular matrix proteins in the human childhood and adolescent growth plate.
    Häusler G; Helmreich M; Marlovits S; Egerbacher M
    Calcif Tissue Int; 2002 Sep; 71(3):212-8. PubMed ID: 12154393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.