These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 35905590)
1. Subchondral bone-inspired hydrogel scaffold for cartilage regeneration. Guo C; Cao Z; Peng Y; Wu R; Xu H; Yuan Z; Xiong H; Wang Y; Wu Y; Li W; Kong Q; Wang Y; Wu J Colloids Surf B Biointerfaces; 2022 Oct; 218():112721. PubMed ID: 35905590 [TBL] [Abstract][Full Text] [Related]
2. A nanozyme-functionalized bilayer hydrogel scaffold for modulating the inflammatory microenvironment to promote osteochondral regeneration. Hu C; Huang R; Xia J; Hu X; Xie D; Jin Y; Qi W; Zhao C; Hu Z J Nanobiotechnology; 2024 Jul; 22(1):445. PubMed ID: 39069607 [TBL] [Abstract][Full Text] [Related]
3. Nanoscale Thermosensitive Hydrogel Scaffolds Promote the Chondrogenic Differentiation of Dental Pulp Stem and Progenitor Cells: A Minimally Invasive Approach for Cartilage Regeneration. Talaat W; Aryal Ac S; Al Kawas S; Samsudin ABR; Kandile NG; Harding DRK; Ghoneim MM; Zeiada W; Jagal J; Aboelnaga A; Haider M Int J Nanomedicine; 2020; 15():7775-7789. PubMed ID: 33116500 [TBL] [Abstract][Full Text] [Related]
4. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Heirani-Tabasi A; Hosseinzadeh S; Rabbani S; Ahmadi Tafti SH; Jamshidi K; Soufizomorrod M; Soleimani M Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34144542 [TBL] [Abstract][Full Text] [Related]
5. Photocrosslinkable, Injectable Locust Bean Gum Hydrogel Induces Chondrogenic Differentiation of Stem Cells for Cartilage Regeneration. Qu Y; He S; Luo S; Zhao J; Liang R; Liao C; Zheng L Adv Healthc Mater; 2023 Jul; 12(18):e2203079. PubMed ID: 36881328 [TBL] [Abstract][Full Text] [Related]
6. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Hu M; Yang J; Xu J Drug Deliv; 2021 Dec; 28(1):607-619. PubMed ID: 33739203 [TBL] [Abstract][Full Text] [Related]
7. An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Zhu Y; Kong L; Farhadi F; Xia W; Chang J; He Y; Li H Biomaterials; 2019 Feb; 192():149-158. PubMed ID: 30448699 [TBL] [Abstract][Full Text] [Related]
11. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
12. Covalently conjugated transforming growth factor-β1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Choi B; Kim S; Fan J; Kowalski T; Petrigliano F; Evseenko D; Lee M Biomater Sci; 2015 May; 3(5):742-52. PubMed ID: 26222593 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Cao Y; Zhang H; Qiu M; Zheng Y; Shi X; Yang J Int J Biol Macromol; 2024 Feb; 257(Pt 1):128593. PubMed ID: 38056750 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Lin S; Lee WYW; Feng Q; Xu L; Wang B; Man GCW; Chen Y; Jiang X; Bian L; Cui L; Wei B; Li G Stem Cell Res Ther; 2017 Oct; 8(1):221. PubMed ID: 28974254 [TBL] [Abstract][Full Text] [Related]
15. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Li P; Fu L; Liao Z; Peng Y; Ning C; Gao C; Zhang D; Sui X; Lin Y; Liu S; Hao C; Guo Q Biomaterials; 2021 Nov; 278():121131. PubMed ID: 34543785 [TBL] [Abstract][Full Text] [Related]
16. Nanosilicate-Reinforced Silk Fibroin Hydrogel for Endogenous Regeneration of Both Cartilage and Subchondral Bone. Sheng R; Chen J; Wang H; Luo Y; Liu J; Chen Z; Mo Q; Chi J; Ling C; Tan X; Yao Q; Zhang W Adv Healthc Mater; 2022 Sep; 11(17):e2200602. PubMed ID: 35749970 [TBL] [Abstract][Full Text] [Related]
17. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. Huang B; Li P; Chen M; Peng L; Luo X; Tian G; Wang H; Wu L; Tian Q; Li H; Yang Y; Jiang S; Yang Z; Zha K; Sui X; Liu S; Guo Q J Nanobiotechnology; 2022 Jan; 20(1):25. PubMed ID: 34991615 [TBL] [Abstract][Full Text] [Related]
18. 3D bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering. Kosik-Kozioł A; Costantini M; Mróz A; Idaszek J; Heljak M; Jaroszewicz J; Kijeńska E; Szöke K; Frerker N; Barbetta A; Brinchmann JE; Święszkowski W Biofabrication; 2019 May; 11(3):035016. PubMed ID: 30943457 [TBL] [Abstract][Full Text] [Related]
19. A composite hydrogel scaffold based on collagen and carboxymethyl chitosan for cartilage regeneration through one-step chemical crosslinking. Lin Y; Chen S; Liu Y; Guo F; Miao Q; Huang H Int J Biol Macromol; 2023 Jan; 226():706-715. PubMed ID: 36526059 [TBL] [Abstract][Full Text] [Related]
20. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice. Shen K; Liu X; Qin H; Chai Y; Wang L; Yu B Int J Med Sci; 2021; 18(16):3808-3820. PubMed ID: 34790057 [No Abstract] [Full Text] [Related] [Next] [New Search]