These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35905743)

  • 1. Aberrant human ClpP activation disturbs mitochondrial proteome homeostasis to suppress pancreatic ductal adenocarcinoma.
    Wang P; Zhang T; Wang X; Xiao H; Li H; Zhou LL; Yang T; Wei B; Zhu Z; Zhou L; Yang S; Lu X; Zhang Y; Huang Y; Gan J; Yang CG
    Cell Chem Biol; 2022 Sep; 29(9):1396-1408.e8. PubMed ID: 35905743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the structure-activity relationship and antileukemic activity of diacylpyramide compounds as human ClpP agonists.
    Zhang R; Wang P; Wei B; Chen L; Song X; Pan Y; Li J; Gan J; Zhang T; Yang CG
    Eur J Med Chem; 2023 Oct; 258():115577. PubMed ID: 37352796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Matrix Protease ClpP Agonists Inhibit Cancer Stem Cell Function in Breast Cancer Cells by Disrupting Mitochondrial Homeostasis.
    Greer YE; Hernandez L; Fennell EMJ; Kundu M; Voeller D; Chari R; Gilbert SF; Gilbert TSK; Ratnayake S; Tang B; Hafner M; Chen Q; Meerzaman D; Iwanowicz E; Annunziata CM; Graves LM; Lipkowitz S
    Cancer Res Commun; 2022 Oct; 2(10):1144-1161. PubMed ID: 36388465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of TR-107, a novel chemical activator of the human mitochondrial protease ClpP.
    Fennell EMJ; Aponte-Collazo LJ; Wynn JD; Drizyte-Miller K; Leung E; Greer YE; Graves PR; Iwanowicz AA; Ashamalla H; Holmuhamedov E; Lang H; Karanewsky DS; Der CJ; Houry WA; Lipkowitz S; Iwanowicz EJ; Graves LM
    Pharmacol Res Perspect; 2022 Aug; 10(4):e00993. PubMed ID: 35929764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Caseinolytic Protease P: A Possible Novel Prognostic Marker and Therapeutic Target in Cancer.
    Cormio A; Sanguedolce F; Pesce V; Musicco C
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34207660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLPP deficiency ameliorates neurodegeneration caused by impaired mitochondrial protein synthesis.
    Rumyantseva A; Popovic M; Trifunovic A
    Brain; 2022 Mar; 145(1):92-104. PubMed ID: 35240691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective activator of human ClpP triggers cell cycle arrest to inhibit lung squamous cell carcinoma.
    Zhou LL; Zhang T; Xue Y; Yue C; Pan Y; Wang P; Yang T; Li M; Zhou H; Ding K; Gan J; Ji H; Yang CG
    Nat Commun; 2023 Nov; 14(1):7069. PubMed ID: 37923710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IMP075 targeting ClpP for colon cancer therapy in vivo and in vitro.
    Zhang J; Luo B; Sui J; Qiu Z; Huang J; Yang T; Luo Y
    Biochem Pharmacol; 2022 Oct; 204():115232. PubMed ID: 36030831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClpP/ClpX deficiency impairs mitochondrial functions and mTORC1 signaling during spermatogenesis.
    Guo C; Xiao Y; Gu J; Zhao P; Hu Z; Zheng J; Hua R; Hai Z; Su J; Zhang JV; Yeung WSB; Wang T
    Commun Biol; 2023 Oct; 6(1):1012. PubMed ID: 37798322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia.
    Cole A; Wang Z; Coyaud E; Voisin V; Gronda M; Jitkova Y; Mattson R; Hurren R; Babovic S; Maclean N; Restall I; Wang X; Jeyaraju DV; Sukhai MA; Prabha S; Bashir S; Ramakrishnan A; Leung E; Qia YH; Zhang N; Combes KR; Ketela T; Lin F; Houry WA; Aman A; Al-Awar R; Zheng W; Wienholds E; Xu CJ; Dick J; Wang JC; Moffat J; Minden MD; Eaves CJ; Bader GD; Hao Z; Kornblau SM; Raught B; Schimmer AD
    Cancer Cell; 2015 Jun; 27(6):864-76. PubMed ID: 26058080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality.
    Ishizawa J; Zarabi SF; Davis RE; Halgas O; Nii T; Jitkova Y; Zhao R; St-Germain J; Heese LE; Egan G; Ruvolo VR; Barghout SH; Nishida Y; Hurren R; Ma W; Gronda M; Link T; Wong K; Mabanglo M; Kojima K; Borthakur G; MacLean N; Ma MCJ; Leber AB; Minden MD; Houry W; Kantarjian H; Stogniew M; Raught B; Pai EF; Schimmer AD; Andreeff M
    Cancer Cell; 2019 May; 35(5):721-737.e9. PubMed ID: 31056398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of FOXO3a induces epithelial-mesenchymal transition and promotes metastasis of pancreatic ductal adenocarcinoma by activation of the β-catenin/TCF4 pathway through SPRY2.
    Li J; Yang R; Dong Y; Chen M; Wang Y; Wang G
    J Exp Clin Cancer Res; 2019 Jan; 38(1):38. PubMed ID: 30691517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenyl Esters Are Potent Inhibitors of Caseinolytic Protease P and Reveal a Stereogenic Switch for Deoligomerization.
    Hackl MW; Lakemeyer M; Dahmen M; Glaser M; Pahl A; Lorenz-Baath K; Menzel T; Sievers S; Böttcher T; Antes I; Waldmann H; Sieber SA
    J Am Chem Soc; 2015 Jul; 137(26):8475-83. PubMed ID: 26083639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone deacetylase inhibition is synthetically lethal with arginine deprivation in pancreatic cancers with low argininosuccinate synthetase 1 expression.
    Kim SS; Xu S; Cui J; Poddar S; Le TM; Hayrapetyan H; Li L; Wu N; Moore AM; Zhou L; Yu AC; Dann AM; Elliott IA; Abt ER; Kim W; Dawson DW; Radu CG; Donahue TR
    Theranostics; 2020; 10(2):829-840. PubMed ID: 31903153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncogenic HSP60 regulates mitochondrial oxidative phosphorylation to support Erk1/2 activation during pancreatic cancer cell growth.
    Zhou C; Sun H; Zheng C; Gao J; Fu Q; Hu N; Shao X; Zhou Y; Xiong J; Nie K; Zhou H; Shen L; Fang H; Lyu J
    Cell Death Dis; 2018 Feb; 9(2):161. PubMed ID: 29415987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PIN1 Maintains Redox Balance via the c-Myc/NRF2 Axis to Counteract Kras-Induced Mitochondrial Respiratory Injury in Pancreatic Cancer Cells.
    Liang C; Shi S; Liu M; Qin Y; Meng Q; Hua J; Ji S; Zhang Y; Yang J; Xu J; Ni Q; Li M; Yu X
    Cancer Res; 2019 Jan; 79(1):133-145. PubMed ID: 30355620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartate β-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway.
    Ogawa K; Lin Q; Li L; Bai X; Chen X; Chen H; Kong R; Wang Y; Zhu H; He F; Xu Q; Liu L; Li M; Zhang S; Nagaoka K; Carlson R; Safran H; Charpentier K; Sun B; Wands J; Dong X
    J Hematol Oncol; 2019 Dec; 12(1):144. PubMed ID: 31888763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation.
    Deepa SS; Bhaskaran S; Ranjit R; Qaisar R; Nair BC; Liu Y; Walsh ME; Fok WC; Van Remmen H
    Free Radic Biol Med; 2016 Feb; 91():281-92. PubMed ID: 26721594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UBL4A inhibits autophagy-mediated proliferation and metastasis of pancreatic ductal adenocarcinoma via targeting LAMP1.
    Chen H; Li L; Hu J; Zhao Z; Ji L; Cheng C; Zhang G; Zhang T; Li Y; Chen H; Pan S; Sun B
    J Exp Clin Cancer Res; 2019 Jul; 38(1):297. PubMed ID: 31288830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docosahexaenoic acid inhibits the proliferation of Kras/TP53 double mutant pancreatic ductal adenocarcinoma cells through modulation of glutathione level and suppression of nucleotide synthesis.
    Hung WC; Lee DY; Chiang EI; Syu JN; Chao CY; Yang MD; Tsai SY; Tang FY
    PLoS One; 2020; 15(11):e0241186. PubMed ID: 33137095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.