BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35905825)

  • 21. Biomechanical and microstructural characterisation of the porcine stomach wall: Location- and layer-dependent investigations.
    Bauer M; Morales-Orcajo E; Klemm L; Seydewitz R; Fiebach V; Siebert T; Böl M
    Acta Biomater; 2020 Jan; 102():83-99. PubMed ID: 31760221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in the microstructure of the human aortic medial layer under biaxial loading investigated by multi-photon microscopy.
    Pukaluk A; Wolinski H; Viertler C; Regitnig P; Holzapfel GA; Sommer G
    Acta Biomater; 2022 Oct; 151():396-413. PubMed ID: 35970481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transmural variation in elastin fiber orientation distribution in the arterial wall.
    Yu X; Wang Y; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():745-753. PubMed ID: 28838859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructure-based constitutive model of coronary artery with active smooth muscle contraction.
    Chen H; Kassab GS
    Sci Rep; 2017 Aug; 7(1):9339. PubMed ID: 28839149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biaxial elastic material properties of porcine coronary media and adventitia.
    Pandit A; Lu X; Wang C; Kassab GS
    Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2581-7. PubMed ID: 15792993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanobiology of the arterial tissue from the aortic root to the diaphragm.
    Taghizadeh H
    Med Eng Phys; 2021 Oct; 96():64-70. PubMed ID: 34565554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimentally validated microstructural 3D constitutive model of coronary arterial media.
    Hollander Y; Durban D; Lu X; Kassab GS; Lanir Y
    J Biomech Eng; 2011 Mar; 133(3):031007. PubMed ID: 21303183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.
    Thomas VS; Lai V; Amini R
    Acta Biomater; 2019 Aug; 94():524-535. PubMed ID: 31229629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages.
    Jadidi M; Sherifova S; Sommer G; Kamenskiy A; Holzapfel GA
    Acta Biomater; 2021 Feb; 121():461-474. PubMed ID: 33279711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biaxial mechanical properties of the bronchial tree: Characterization of elasticity, extensibility, and energetics, including the effect of strain rate and preconditioning.
    Sattari S; Mariano CA; Eskandari M
    Acta Biomater; 2023 Jan; 155():410-422. PubMed ID: 36328122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning.
    Linka K; Cavinato C; Humphrey JD; Cyron CJ
    Acta Biomater; 2022 Jul; 147():63-72. PubMed ID: 35643194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanics of mitral valve leaflets: Second harmonic generation microscopy, biaxial mechanical tests and tissue modeling.
    Sadeghinia MJ; Skallerud B; Holzapfel GA; Prot V
    Acta Biomater; 2022 Mar; 141():244-254. PubMed ID: 35007783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.
    Huang AH; Balestrini JL; Udelsman BV; Zhou KC; Zhao L; Ferruzzi J; Starcher BC; Levene MJ; Humphrey JD; Niklason LE
    Tissue Eng Part C Methods; 2016 Jun; 22(6):524-33. PubMed ID: 27108525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biaxial vasoactivity of porcine coronary artery.
    Huo Y; Cheng Y; Zhao X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2058-63. PubMed ID: 22427520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstructure and Mechanical Property of Glutaraldehyde-Treated Porcine Pulmonary Ligament.
    Chen H; Zhao X; Berwick ZC; Krieger JF; Chambers S; Kassab GS
    J Biomech Eng; 2016 Jun; 138(6):061003. PubMed ID: 27040732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of affine fiber kinematics in porcine tricuspid valve leaflets using polarized spatial frequency domain imaging and planar biaxial testing.
    Ross CJ; Mullins BT; Hillshafer CE; Mir A; Burkhart HM; Lee CH
    J Biomech; 2021 Jun; 123():110475. PubMed ID: 34004393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A direct fiber approach to model sclera collagen architecture and biomechanics.
    Ji F; Bansal M; Wang B; Hua Y; Islam MR; Matuschke F; Axer M; Sigal IA
    Exp Eye Res; 2023 Jul; 232():109510. PubMed ID: 37207867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biaxial tensile testing and constitutive modeling of human supraspinatus tendon.
    Szczesny SE; Peloquin JM; Cortes DH; Kadlowec JA; Soslowsky LJ; Elliott DM
    J Biomech Eng; 2012 Feb; 134(2):021004. PubMed ID: 22482671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.