These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35905883)
1. An accelerated approach of biogas production through a two-stage BioH Pomdaeng P; Chu CY; Sripraphaa K; Sintuya H Bioresour Technol; 2022 Oct; 361():127709. PubMed ID: 35905883 [TBL] [Abstract][Full Text] [Related]
2. Research on Biogas Yield from Macroalgae with Inoculants at Different Organic Loading Rates in a Three-Stage Bioreactor. Zagorskis A; Dauknys R; Pranskevičius M; Khliestova O Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36673724 [TBL] [Abstract][Full Text] [Related]
3. Influences of size reduction, hydration, and thermal-assisted hydration pretreatment to increase the biogas production from Napier grass and Napier silage. Jomnonkhaow U; Sittijunda S; Reungsang A Bioresour Technol; 2021 Jul; 331():125034. PubMed ID: 33798860 [TBL] [Abstract][Full Text] [Related]
4. Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters. Farhat A; Miladi B; Hamdi M; Bouallagui H Environ Sci Pollut Res Int; 2018 Oct; 25(28):27945-27958. PubMed ID: 30058041 [TBL] [Abstract][Full Text] [Related]
5. Enhancing bio-hydrogen and bio-methane production of concentrated latex wastewater (CLW) by Co-digesting with palm oil mill effluent (POME): Batch and continuous performance test and ADM-1 modeling. Raketh M; Kana R; Kongjan P; Faua'ad Syed Muhammad SA; O-Thong S; Mamimin C; Jariyaboon R J Environ Manage; 2023 Nov; 346():119031. PubMed ID: 37741194 [TBL] [Abstract][Full Text] [Related]
6. Holistic determination of suitable conditions for biogas production from Pennisetum purpureum x Pennisetum americanum liquor in anaerobic baffled reactor. Suaisom P; Pholchan P; Aggarangsi P J Environ Manage; 2019 Oct; 247():730-737. PubMed ID: 31279804 [TBL] [Abstract][Full Text] [Related]
7. Optimizing the thermophilic hydrolysis of grass silage in a two-phase anaerobic digestion system. Orozco AM; Nizami AS; Murphy JD; Groom E Bioresour Technol; 2013 Sep; 143():117-25. PubMed ID: 23792661 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the biomethane potential from the anaerobic co-digestion of palm oil mill effluent, food waste, and sewage sludge in Malaysia. Al-Samet MA; Goto M; Mubarak NM; Al-Muraisy SA Environ Sci Pollut Res Int; 2021 Dec; 28(47):67632-67645. PubMed ID: 34255262 [TBL] [Abstract][Full Text] [Related]
9. Batch and continuous biogas production from grass silage liquor. Abu-Dahrieh J; Orozco A; Groom E; Rooney D Bioresour Technol; 2011 Dec; 102(23):10922-8. PubMed ID: 21993325 [TBL] [Abstract][Full Text] [Related]
10. Utilising biohydrogen to increase methane production, energy yields and process efficiency via two stage anaerobic digestion of grass. Massanet-Nicolau J; Dinsdale R; Guwy A; Shipley G Bioresour Technol; 2015; 189():379-383. PubMed ID: 25913885 [TBL] [Abstract][Full Text] [Related]
11. Implementing polyhydroxyalkanoates production to anaerobic digestion of organic fraction of municipal solid waste to diversify products and increase total energy recovery. Papa G; Pepè Sciarria T; Carrara A; Scaglia B; D'Imporzano G; Adani F Bioresour Technol; 2020 Dec; 318():124270. PubMed ID: 33099102 [TBL] [Abstract][Full Text] [Related]
12. Long-term operation of the pilot scale two-stage anaerobic digestion of municipal biowaste in Ho Chi Minh City. Nguyen PD; Tran NT; Nguyen TT; Dang BT; Le MT; Bui XT; Mukai F; Kobayashi H; Ngo HH Sci Total Environ; 2021 Apr; 766():142562. PubMed ID: 33071124 [TBL] [Abstract][Full Text] [Related]
13. Optimisation of digester performance with increasing organic loading rate for mono- and co-digestion of grass silage and dairy slurry. Wall DM; Allen E; Straccialini B; O'Kiely P; Murphy JD Bioresour Technol; 2014 Dec; 173():422-428. PubMed ID: 25444886 [TBL] [Abstract][Full Text] [Related]
15. Decentralized biorefinery for lignocellulosic biomass: Integrating anaerobic digestion with thermochemical conversion. Sawatdeenarunat C; Nam H; Adhikari S; Sung S; Khanal SK Bioresour Technol; 2018 Feb; 250():140-147. PubMed ID: 29161573 [TBL] [Abstract][Full Text] [Related]
16. Effect of temperature on continuous dry fermentation of swine manure. Deng L; Chen C; Zheng D; Yang H; Liu Y; Chen Z J Environ Manage; 2016 Jul; 177():247-52. PubMed ID: 27107950 [TBL] [Abstract][Full Text] [Related]
17. Methane potential of fruit and vegetable waste: an evaluation of the semi-continuous anaerobic mono-digestion. Edwiges T; Frare LM; Lima Alino JH; Triolo JM; Flotats X; Silva de Mendonça Costa MS Environ Technol; 2020 Mar; 41(7):921-930. PubMed ID: 30131004 [TBL] [Abstract][Full Text] [Related]
18. Biotechnological application of sustainable biogas production through dry anaerobic digestion of Napier grass. Dussadee N; Ramaraj R; Cheunbarn T 3 Biotech; 2017 May; 7(1):47. PubMed ID: 28444591 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization. Nkemka VN; Marchbank DH; Hao X Waste Manag; 2015 Sep; 43():123-9. PubMed ID: 26037058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]