These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 35905936)

  • 1. Automated filter selection for suppression of Gibbs ringing artefacts in MRI.
    Wang Y; Healy JJ
    Magn Reson Imaging; 2022 Nov; 93():3-10. PubMed ID: 35905936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI.
    Lee HH; Novikov DS; Fieremans E
    Magn Reson Med; 2021 Nov; 86(5):2733-2750. PubMed ID: 34227142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity.
    Archibald R; Gelb A
    IEEE Trans Med Imaging; 2002 Apr; 21(4):305-19. PubMed ID: 12022619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gibbs artifact reduction by nonnegativity constraint.
    Zeng GL
    J Nucl Med Technol; 2011 Sep; 39(3):213-9. PubMed ID: 21795376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gibbs-ringing artifact removal based on local subvoxel-shifts.
    Kellner E; Dhital B; Kiselev VG; Reisert M
    Magn Reson Med; 2016 Nov; 76(5):1574-1581. PubMed ID: 26745823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic detection of Gibbs artefact in MR images with transfer learning approach.
    Kocet L; Romarič K; Žibert J
    Technol Health Care; 2023; 31(1):239-246. PubMed ID: 36120746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards elimination of the dark-rim artifact in first-pass myocardial perfusion MRI: removing Gibbs ringing effects using optimized radial imaging.
    Sharif B; Dharmakumar R; LaBounty T; Arsanjani R; Shufelt C; Thomson L; Merz CN; Berman DS; Li D
    Magn Reson Med; 2014 Jul; 72(1):124-36. PubMed ID: 24030840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved adaptive reconstruction of multichannel MR images.
    Ma YJ; Liu W; Zhao X; Tang W; Zhang Z; Tang X; Fan Y; Li H; Gao JH
    Med Phys; 2015 Feb; 42(2):637-644. PubMed ID: 28102607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MR image reconstruction via guided filter.
    Huang H; Yang H; Wang K
    Med Biol Eng Comput; 2018 Apr; 56(4):635-648. PubMed ID: 28840445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-modal synergistic PET and MR reconstruction using mutually weighted quadratic priors.
    Mehranian A; Belzunce MA; McGinnity CJ; Bustin A; Prieto C; Hammers A; Reader AJ
    Magn Reson Med; 2019 Mar; 81(3):2120-2134. PubMed ID: 30325053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gibbs ringing in diffusion MRI.
    Veraart J; Fieremans E; Jelescu IO; Knoll F; Novikov DS
    Magn Reson Med; 2016 Jul; 76(1):301-14. PubMed ID: 26257388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an optimised processing pipeline for diffusion magnetic resonance imaging data: Effects of artefact corrections on diffusion metrics and their age associations in UK Biobank.
    Maximov II; Alnaes D; Westlye LT
    Hum Brain Mapp; 2019 Oct; 40(14):4146-4162. PubMed ID: 31173439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoration of low resolution metabolic images with a priori anatomic information: 23Na MRI in myocardial infarction.
    Constantinides CD; Weiss RG; Lee R; Bolar D; Bottomley PA
    Magn Reson Imaging; 2000 May; 18(4):461-71. PubMed ID: 10788724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a novel reconstruction method based on the compressed sensing technique: Application to cervical spine MR imaging.
    Takato Y; Hata H; Inoue Y; Matsunaga K; Hara T; Komi S; Nakajima A
    Clin Imaging; 2019; 56():140-145. PubMed ID: 31030113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Elimination of Gibbs artifact based on local subpixel shift and interlaced local variation].
    Wang Z; Zhao K; Xu Z; Feng Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 May; 39(5):603-608. PubMed ID: 31140427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A higher dimensional homodyne filter for phase sensitive partial Fourier reconstruction of magnetic resonance imaging.
    Paul JS; Krishna Swamy Pillai U
    Magn Reson Imaging; 2015 Nov; 33(9):1114-1125. PubMed ID: 26117692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved depiction of small anatomic structures in MR images using Gaussian-weighted spirals and zero-filled interpolation.
    Elgavish RA; Twieg DB
    Magn Reson Imaging; 2003 Feb; 21(2):103-12. PubMed ID: 12670596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image reconstruction: an overview for clinicians.
    Hansen MS; Kellman P
    J Magn Reson Imaging; 2015 Mar; 41(3):573-85. PubMed ID: 24962650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-plane "superresolution" MRI with phaseless sub-pixel encoding.
    Hennel F; Tian R; Engel M; Pruessmann KP
    Magn Reson Med; 2018 Dec; 80(6):2384-2392. PubMed ID: 29656440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.