BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35905994)

  • 41. Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites.
    Andersen PL; Xu F; Ziola B; McGregor WG; Xiao W
    Mol Biol Cell; 2011 Jul; 22(13):2373-83. PubMed ID: 21551069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ubiquitination of PCNA and the polymerase switch in human cells.
    Kannouche PL; Lehmann AR
    Cell Cycle; 2004 Aug; 3(8):1011-3. PubMed ID: 15280666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ubiquitin-dependent regulation of translesion polymerases.
    Chun AC; Jin DY
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):110-5. PubMed ID: 20074045
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mismatch repair protein MSH2 regulates translesion DNA synthesis following exposure of cells to UV radiation.
    Lv L; Wang F; Ma X; Yang Y; Wang Z; Liu H; Li X; Liu Z; Zhang T; Huang M; Friedberg EC; Tang TS; Guo C
    Nucleic Acids Res; 2013 Dec; 41(22):10312-22. PubMed ID: 24038355
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rev1 plays central roles in mammalian DNA-damage tolerance in response to UV irradiation.
    Niu X; Chen W; Bi T; Lu M; Qin Z; Xiao W
    FEBS J; 2019 Jul; 286(14):2711-2725. PubMed ID: 30963698
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNA-splicing factor SART3 regulates translesion DNA synthesis.
    Huang M; Zhou B; Gong J; Xing L; Ma X; Wang F; Wu W; Shen H; Sun C; Zhu X; Yang Y; Sun Y; Liu Y; Tang TS; Guo C
    Nucleic Acids Res; 2018 May; 46(9):4560-4574. PubMed ID: 29590477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ubiquitination and deubiquitination of PCNA in response to stalling of the replication fork.
    Brown S; Niimi A; Lehmann AR
    Cell Cycle; 2009 Mar; 8(5):689-92. PubMed ID: 19221475
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks.
    Álvarez V; Frattini C; Sacristán MP; Gallego-Sánchez A; Bermejo R; Bueno A
    Cell Rep; 2019 Oct; 29(5):1323-1335.e5. PubMed ID: 31665643
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigenK164R mutant mice.
    Langerak P; Krijger PH; Heideman MR; van den Berk PC; Jacobs H
    Philos Trans R Soc Lond B Biol Sci; 2009 Mar; 364(1517):621-9. PubMed ID: 19008189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis.
    Park JM; Yang SW; Yu KR; Ka SH; Lee SW; Seol JH; Jeon YJ; Chung CH
    Mol Cell; 2014 May; 54(4):626-38. PubMed ID: 24768535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA.
    Despras E; Sittewelle M; Pouvelle C; Delrieu N; Cordonnier AM; Kannouche PL
    Nat Commun; 2016 Nov; 7():13326. PubMed ID: 27811911
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases.
    Sabbioneda S; Gourdin AM; Green CM; Zotter A; Giglia-Mari G; Houtsmuller A; Vermeulen W; Lehmann AR
    Mol Biol Cell; 2008 Dec; 19(12):5193-202. PubMed ID: 18799611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA.
    Andersen PL; Xu F; Xiao W
    Cell Res; 2008 Jan; 18(1):162-73. PubMed ID: 18157158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intrinsic flexibility of ubiquitin on proliferating cell nuclear antigen (PCNA) in translesion synthesis.
    Hibbert RG; Sixma TK
    J Biol Chem; 2012 Nov; 287(46):39216-23. PubMed ID: 22989887
    [TBL] [Abstract][Full Text] [Related]  

  • 55. c-Jun N-terminal kinase-mediated Rad18 phosphorylation facilitates Polη recruitment to stalled replication forks.
    Barkley LR; Palle K; Durando M; Day TA; Gurkar A; Kakusho N; Li J; Masai H; Vaziri C
    Mol Biol Cell; 2012 May; 23(10):1943-54. PubMed ID: 22456510
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links.
    Hicks JK; Chute CL; Paulsen MT; Ragland RL; Howlett NG; Guéranger Q; Glover TW; Canman CE
    Mol Cell Biol; 2010 Mar; 30(5):1217-30. PubMed ID: 20028736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability.
    Qian J; Pentz K; Zhu Q; Wang Q; He J; Srivastava AK; Wani AA
    Oncogene; 2015 Sep; 34(36):4791-6. PubMed ID: 25435364
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1.
    Garg P; Burgers PM
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18361-6. PubMed ID: 16344468
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome.
    Temviriyanukul P; van Hees-Stuivenberg S; Delbos F; Jacobs H; de Wind N; Jansen JG
    DNA Repair (Amst); 2012 Jun; 11(6):550-8. PubMed ID: 22521143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome.
    Quinet A; Vessoni AT; Rocha CR; Gottifredi V; Biard D; Sarasin A; Menck CF; Stary A
    DNA Repair (Amst); 2014 Feb; 14():27-38. PubMed ID: 24380689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.