These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35906181)

  • 1. Single-Step Synthesis of Fe-Fe
    Xie HQ; Zheng X; Feng QY; Chen XP; Zou ZH; Wang QX; Tang J; Li Y; Ling Y
    ChemSusChem; 2022 Nov; 15(21):e202200919. PubMed ID: 35906181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of High Surface Area Fe/Fe
    Wei Y; Yu Y; Chen J; Wei M; Huang Y; Zhou X; Liu W
    Chemistry; 2023 Dec; 29(71):e202302734. PubMed ID: 37926848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts.
    Cui X; Tang C; Liu XM; Wang C; Ma W; Zhang Q
    Chemistry; 2018 Dec; 24(69):18494-18501. PubMed ID: 29907981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimony-Based Composites Loaded on Phosphorus-Doped Carbon for Boosting Faradaic Efficiency of the Electrochemical Nitrogen Reduction Reaction.
    Liu X; Jang H; Li P; Wang J; Qin Q; Kim MG; Li G; Cho J
    Angew Chem Int Ed Engl; 2019 Sep; 58(38):13329-13334. PubMed ID: 31338913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions.
    Wang D; Azofra LM; Harb M; Cavallo L; Zhang X; Suryanto BHR; MacFarlane DR
    ChemSusChem; 2018 Oct; 11(19):3416-3422. PubMed ID: 30091299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greatly Improving Electrochemical N
    Wu T; Zhu X; Xing Z; Mou S; Li C; Qiao Y; Liu Q; Luo Y; Shi X; Zhang Y; Sun X
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18449-18453. PubMed ID: 31549471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Fe/Co/B Codoped MoS
    Ji JY; Zhang W; Li C; Cao Y; Xue J; Gu H; Lang JP
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):41734-41742. PubMed ID: 39093613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mo
    Wan Y; Wang Z; Li J; Lv R
    ACS Nano; 2022 Jan; 16(1):643-654. PubMed ID: 34964347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-Templated Construction of Ultrathin Cobalt Doped Iron Thiophosphite Nanosheets toward Electrochemical Ammonia Synthesis.
    Huang H; Li F; Xue Q; Zhang Y; Yin S; Chen Y
    Small; 2019 Dec; 15(51):e1903500. PubMed ID: 31858705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory-Guided Construction of the Unsaturated V-N
    Wang S; Qian C; Zhou S
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29244-29251. PubMed ID: 37290063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobicity Tailoring of Ferric Covalent Organic Framework/MXene Nanosheets for High-Efficiency Nitrogen Electroreduction to Ammonia.
    He H; Wen HM; Li HK; Li P; Wang J; Yang Y; Li CP; Zhang Z; Du M
    Adv Sci (Weinh); 2023 May; 10(15):e2206933. PubMed ID: 36995064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature.
    Ghorai UK; Paul S; Ghorai B; Adalder A; Kapse S; Thapa R; Nagendra A; Gain A
    ACS Nano; 2021 Mar; 15(3):5230-5239. PubMed ID: 33646739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pyrolysis-phosphorization approach to fabricate carbon nanotubes with embedded CoP nanoparticles for ambient electrosynthesis of ammonia.
    Zhang S; Gong W; Lv Y; Wang H; Han M; Wang G; Shi T; Zhang H
    Chem Commun (Camb); 2019 Oct; 55(82):12376-12379. PubMed ID: 31559991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting electrocatalytic reduction of nitrogen to ammonia under ambient conditions by alloy engineering.
    Jin Y; Ding X; Zhang L; Cong M; Xu F; Wei Y; Hao S; Gao Y
    Chem Commun (Camb); 2020 Sep; 56(77):11477-11480. PubMed ID: 32856638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic nitrogen reduction to ammonia at low potential using a phenalenyl-based iron(III) complex.
    Waghela SR; Adalder A; Bhattacharjee J; Mukherjee N; Paul S; Ghorai UK
    Dalton Trans; 2024 Oct; 53(39):16154-16158. PubMed ID: 39320430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen Vacancy Engineering of Fe-Doped NiMoO
    Liu N; Wu R; Liu Y; Liu Y; Deng P; Li Y; Du Y; Cheng Y; Zhuang Z; Kang Z; Li H
    Inorg Chem; 2023 Jul; 62(30):11990-12000. PubMed ID: 37462358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical N
    Ren X; Cui G; Chen L; Xie F; Wei Q; Tian Z; Sun X
    Chem Commun (Camb); 2018 Jul; 54(61):8474-8477. PubMed ID: 30003198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting Nitrogen Reduction Reaction via Electronic Coupling of Atomically Dispersed Bismuth with Titanium Nitride Nanorods.
    Xi Z; Shi K; Xu X; Jing P; Liu B; Gao R; Zhang J
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104245. PubMed ID: 34854576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ·H effectively enhance electrocatalytic nitrogen fixation.
    Sun Y; Yu Y; Xu W; Wu D; Wei Y; Lai J; Wang L
    J Colloid Interface Sci; 2023 Jun; 640():619-625. PubMed ID: 36889059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS
    Zhang L; Ji X; Ren X; Ma Y; Shi X; Tian Z; Asiri AM; Chen L; Tang B; Sun X
    Adv Mater; 2018 Jul; 30(28):e1800191. PubMed ID: 29808517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.