These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35906193)

  • 1. Utilization of phosphonic acid compounds by marine bacteria of the genera Phaeobacter, Ruegeria, and Thalassospira (α-Proteobacteria).
    Urata S; Kurosawa Y; Yamasaki N; Yamamoto H; Nishiwaki N; Hongo Y; Adachi M; Yamaguchi H
    FEMS Microbiol Lett; 2022 Aug; 369(1):. PubMed ID: 35906193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phaeobacter and Ruegeria species of the Roseobacter clade colonize separate niches in a Danish Turbot (Scophthalmus maximus)-rearing farm and antagonize Vibrio anguillarum under different growth conditions.
    Porsby CH; Nielsen KF; Gram L
    Appl Environ Microbiol; 2008 Dec; 74(23):7356-64. PubMed ID: 18952864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria.
    Ulrich EC; Kamat SS; Hove-Jensen B; Zechel DL
    Methods Enzymol; 2018; 605():351-426. PubMed ID: 29909833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera.
    Martens T; Heidorn T; Pukall R; Simon M; Tindall BJ; Brinkhoff T
    Int J Syst Evol Microbiol; 2006 Jun; 56(Pt 6):1293-1304. PubMed ID: 16738106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruegeria denitrificans sp. nov., a marine bacterium in the family Rhodobacteraceae with the potential ability for cyanophycin synthesis.
    Arahal DR; Lucena T; Rodrigo-Torres L; Pujalte MJ
    Int J Syst Evol Microbiol; 2018 Aug; 68(8):2515-2522. PubMed ID: 29944092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomerization of alkyl phosphites; some derivatives of 2-bromoethane phosphonic acid.
    KOSOLAPOFF GM
    J Am Chem Soc; 1948 May; 70(5):1971. PubMed ID: 18934550
    [No Abstract]   [Full Text] [Related]  

  • 7. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria.
    Carini P; White AE; Campbell EO; Giovannoni SJ
    Nat Commun; 2014 Jul; 5():4346. PubMed ID: 25000228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Draft genome sequence of the marine
    Giebel HA; Klotz F; Voget S; Poehlein A; Grosser K; Teske A; Brinkhoff T
    Stand Genomic Sci; 2016; 11():81. PubMed ID: 27777651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolved organic phosphorus utilization by the marine bacterium Ruegeria pomeroyi DSS-3 reveals chain length-dependent polyphosphate degradation.
    Adams JC; Steffen R; Chou CW; Duhamel S; Diaz JM
    Environ Microbiol; 2022 May; 24(5):2259-2269. PubMed ID: 35102659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphonate utilization by the globally important marine diazotroph Trichodesmium.
    Dyhrman ST; Chappell PD; Haley ST; Moffett JW; Orchard ED; Waterbury JB; Webb EA
    Nature; 2006 Jan; 439(7072):68-71. PubMed ID: 16397497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino Acid and Sugar Catabolism in the Marine Bacterium Phaeobacter inhibens DSM 17395 from an Energetic Viewpoint.
    Wünsch D; Trautwein K; Scheve S; Hinrichs C; Feenders C; Blasius B; Schomburg D; Rabus R
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in Rhodobacteraceae.
    Smith AF; Rihtman B; Stirrup R; Silvano E; Mausz MA; Scanlan DJ; Chen Y
    ISME J; 2019 Jan; 13(1):39-49. PubMed ID: 30108306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimethylsulfoniopropionate Sulfur and Methyl Carbon Assimilation in
    Wirth JS; Wang T; Huang Q; White RH; Whitman WB
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transporter characterisation reveals aminoethylphosphonate mineralisation as a key step in the marine phosphorus redox cycle.
    Murphy ARJ; Scanlan DJ; Chen Y; Adams NBP; Cadman WA; Bottrill A; Bending G; Hammond JP; Hitchcock A; Wellington EMH; Lidbury IDEA
    Nat Commun; 2021 Jul; 12(1):4554. PubMed ID: 34315891
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Kim J; Kim DY; Yang KH; Kim S; Lee SS
    Int J Syst Evol Microbiol; 2019 Sep; 69(9):2854-2861. PubMed ID: 31274408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera.
    Wirth JS; Whitman WB
    Int J Syst Evol Microbiol; 2018 Jul; 68(7):2393-2411. PubMed ID: 29809121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The widespread capability of methylphosphonate utilization in filamentous cyanobacteria and its ecological significance.
    Zhao L; Lin LZ; Chen MY; Teng WK; Zheng LL; Peng L; Lv J; Brand JJ; Hu CX; Han BP; Song LR; Shu WS
    Water Res; 2022 Jun; 217():118385. PubMed ID: 35405550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel class of sulfur-containing aminolipids widespread in marine roseobacters.
    Smith AF; Silvano E; Päuker O; Guillonneau R; Quareshy M; Murphy A; Mausz MA; Stirrup R; Rihtman B; Aguilo-Ferretjans M; Brandsma J; Petersen J; Scanlan DJ; Chen Y
    ISME J; 2021 Aug; 15(8):2440-2453. PubMed ID: 33750904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cribrihabitans neustonicus sp. nov., isolated from coastal surface seawater, and emended description of the genus Cribrihabitans Chen et al. 2014.
    Hameed A; Shahina M; Lin SY; Lai WA; Liu YC; Hsu YH; Young CC
    Int J Syst Evol Microbiol; 2014 Nov; 64(Pt 11):3897-3903. PubMed ID: 25180090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling.
    Quinn JP; Kulakova AN; Cooley NA; McGrath JW
    Environ Microbiol; 2007 Oct; 9(10):2392-400. PubMed ID: 17803765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.