BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35906531)

  • 21. Simultaneous Single-Cell Profiling of the Transcriptome and Accessible Chromatin Using SHARE-seq.
    Kim SH; Marinov GK; Bagdatli ST; Higashino SI; Shipony Z; Kundaje A; Greenleaf WJ
    Methods Mol Biol; 2023; 2611():187-230. PubMed ID: 36807070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scATAC-Ref: a reference of scATAC-seq with known cell labels in multiple species.
    Qian FC; Zhou LW; Zhu YB; Li YY; Yu ZM; Feng CC; Fang QL; Zhao Y; Cai FH; Wang QY; Tang HF; Li CQ
    Nucleic Acids Res; 2024 Jan; 52(D1):D285-D292. PubMed ID: 37897340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Matrix prior for data transfer between single cell data types in latent Dirichlet allocation.
    Min A; Durham T; Gevirtzman L; Noble WS
    PLoS Comput Biol; 2023 May; 19(5):e1011049. PubMed ID: 37146053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Destin: toolkit for single-cell analysis of chromatin accessibility.
    Urrutia E; Chen L; Zhou H; Jiang Y
    Bioinformatics; 2019 Oct; 35(19):3818-3820. PubMed ID: 30821321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects.
    Lu C; Wei Y; Abbas M; Agula H; Wang E; Meng Z; Zhang R
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly sensitive single-cell chromatin accessibility assay and transcriptome coassay with METATAC.
    Wu H; Li X; Jian F; Yisimayi A; Zheng Y; Tan L; Xing D; Xie XS
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2206450119. PubMed ID: 36161934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive Integration of Single-Cell Data.
    Stuart T; Butler A; Hoffman P; Hafemeister C; Papalexi E; Mauck WM; Hao Y; Stoeckius M; Smibert P; Satija R
    Cell; 2019 Jun; 177(7):1888-1902.e21. PubMed ID: 31178118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are dropout imputation methods for scRNA-seq effective for scATAC-seq data?
    Liu Y; Zhang J; Wang S; Zeng X; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benchmarking automated cell type annotation tools for single-cell ATAC-seq data.
    Wang Y; Sun X; Zhao H
    Front Genet; 2022; 13():1063233. PubMed ID: 36583014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of scATAC-Seq with scRNA-Seq Data.
    Berest I; Tangherloni A
    Methods Mol Biol; 2023; 2584():293-310. PubMed ID: 36495457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering cell types by integrating scATAC-seq data with genome sequences.
    Zeng Y; Luo M; Shangguan N; Shi P; Feng J; Xu J; Chen K; Lu Y; Yu W; Yang Y
    Nat Comput Sci; 2024 Apr; 4(4):285-298. PubMed ID: 38600256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model.
    Duan H; Li F; Shang J; Liu J; Li Y; Liu X
    Interdiscip Sci; 2022 Dec; 14(4):917-928. PubMed ID: 35939233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AtacAnnoR: a reference-based annotation tool for single cell ATAC-seq data.
    Tian L; Xie Y; Xie Z; Tian J; Tian W
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37497729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EpiScanpy: integrated single-cell epigenomic analysis.
    Danese A; Richter ML; Chaichoompu K; Fischer DS; Theis FJ; Colomé-Tatché M
    Nat Commun; 2021 Sep; 12(1):5228. PubMed ID: 34471111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement and Imputation of Peak Signal Enables Accurate Cell-Type Classification in scATAC-seq.
    Cui Z; Cui Y; Gao Y; Jiang T; Zang T; Wang Y
    Front Genet; 2021; 12():658352. PubMed ID: 33889181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation.
    Baek S; Lee I
    Comput Struct Biotechnol J; 2020; 18():1429-1439. PubMed ID: 32637041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The independent prognostic value of global epigenetic alterations: An analysis of single-cell ATAC-seq of circulating leukocytes from trauma patients followed by validation in whole blood leukocyte transcriptomes across three etiologies of critical illness.
    Chen T; Conroy J; Wang X; Situ M; Namas RA; Vodovotz Y; Chen W; Singh H; Billiar TR
    EBioMedicine; 2022 Feb; 76():103860. PubMed ID: 35124428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning single-cell chromatin accessibility profiles using meta-analytic marker genes.
    Kawaguchi RK; Tang Z; Fischer S; Rajesh C; Tripathy R; Koo PK; Gillis J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36549922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells.
    Mimitou EP; Lareau CA; Chen KY; Zorzetto-Fernandes AL; Hao Y; Takeshima Y; Luo W; Huang TS; Yeung BZ; Papalexi E; Thakore PI; Kibayashi T; Wing JB; Hata M; Satija R; Nazor KL; Sakaguchi S; Ludwig LS; Sankaran VG; Regev A; Smibert P
    Nat Biotechnol; 2021 Oct; 39(10):1246-1258. PubMed ID: 34083792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of single-cell cross-species chromatin accessibility landscapes with combinatorial-hybridization-based ATAC-seq.
    Zhang G; Fu Y; Yang L; Ye F; Zhang P; Zhang S; Ma L; Li J; Wu H; Han X; Wang J; Guo G
    Dev Cell; 2024 Mar; 59(6):793-811.e8. PubMed ID: 38330939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.