These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Interrogating the transmission dynamics of Medina M; Zuluaga S; Martínez MF; Bermúdez JC; Hernández C; Beltrán V; Velásquez-Ortiz N; Muñoz M; Ramírez JD; Triana O; Cantillo-Barraza O Front Cell Infect Microbiol; 2022; 12():998202. PubMed ID: 36275020 [TBL] [Abstract][Full Text] [Related]
45. Changes in antennal gene expression underlying sensory system maturation in Rhodnius prolixus. Latorre-Estivalis JM; Große-Wilde E; da Rocha Fernandes G; Hansson BS; Lorenzo MG Insect Biochem Mol Biol; 2022 Jan; 140():103704. PubMed ID: 34942331 [TBL] [Abstract][Full Text] [Related]
46. Functional evaluation of Heat Shock Proteins 70 (HSP70/HSC70) on Rhodnius prolixus (Hemiptera, Reduviidae) physiological responses associated with feeding and starvation. Paim RMM; Araujo RN; Leis M; Sant'anna MRV; Gontijo NF; Lazzari CR; Pereira MH Insect Biochem Mol Biol; 2016 Oct; 77():10-20. PubMed ID: 27491440 [TBL] [Abstract][Full Text] [Related]
47. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. Ribeiro JM; Genta FA; Sorgine MH; Logullo R; Mesquita RD; Paiva-Silva GO; Majerowicz D; Medeiros M; Koerich L; Terra WR; Ferreira C; Pimentel AC; Bisch PM; Leite DC; Diniz MM; da S G V Junior JL; Da Silva ML; Araujo RN; Gandara AC; Brosson S; Salmon D; Bousbata S; González-Caballero N; Silber AM; Alves-Bezerra M; Gondim KC; Silva-Neto MA; Atella GC; Araujo H; Dias FA; Polycarpo C; Vionette-Amaral RJ; Fampa P; Melo AC; Tanaka AS; Balczun C; Oliveira JH; Gonçalves RL; Lazoski C; Rivera-Pomar R; Diambra L; Schaub GA; Garcia ES; Azambuja P; Braz GR; Oliveira PL PLoS Negl Trop Dis; 2014; 8(1):e2594. PubMed ID: 24416461 [TBL] [Abstract][Full Text] [Related]
48. Temporal Variation of the Presence of Rhodnius prolixus (Hemiptera: Reduviidae) Into Rural Dwellings in the Department of Casanare, Eastern Colombia. Rincón-Galvis HJ; Urbano P; Hernández C; Ramírez JD J Med Entomol; 2020 Jan; 57(1):173-180. PubMed ID: 31559422 [TBL] [Abstract][Full Text] [Related]
49. Transmission ecology of Trypanosoma cruzi by Rhodnius prolixus (Reduviidae: Triatominae) infesting palm-tree species in the Colombian Orinoco, indicates risks to human populations. Urbano P; Hernández C; Velásquez-Ortiz N; Ballesteros N; Páez-Triana L; Vega L; Urrea V; Ramírez A; Muñoz M; Ibarra-Cerdeña CN; González C; Ramírez JD PLoS Negl Trop Dis; 2024 Feb; 18(2):e0011981. PubMed ID: 38377140 [TBL] [Abstract][Full Text] [Related]
50. Haemolymph and fat body metallo-protease associated with Enterobacter cloacae infection in the bloodsucking insect, Rhodnius prolixus. Feder D; Salles JM; Garcia ES; Azambuja P Mem Inst Oswaldo Cruz; 1998; 93(6):823-6. PubMed ID: 9921310 [TBL] [Abstract][Full Text] [Related]
51. Sugar feeding in triatomines: a new perspective for controlling the transmission of Chagas disease. Costa MC; Moreira CJC; de Oliveira PL; Juberg J; de Castro DP; Genta FA Front Physiol; 2024; 15():1360255. PubMed ID: 38983720 [No Abstract] [Full Text] [Related]
52. Antiserum against perimicrovillar membranes and midgut tissue reduces the development of Trypanosoma cruzi in the insect vector, Rhodnius prolixus. Gonzalez MS; Hamedi A; Albuquerque-Cunha JM; Nogueira NF; De Souza W; Ratcliffe NA; Azambuja P; Garcia ES; Mello CB Exp Parasitol; 2006 Dec; 114(4):297-304. PubMed ID: 16759654 [TBL] [Abstract][Full Text] [Related]
53. Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus. Rebello KM; Uehara LA; Ennes-Vidal V; Garcia-Gomes AS; Britto C; Azambuja P; Menna-Barreto RFS; Santos ALS; Branquinha MH; d'Avila-Levy CM Parasitology; 2019 Jul; 146(8):1075-1082. PubMed ID: 31057143 [TBL] [Abstract][Full Text] [Related]
54. A standardizable protocol for infection of Rhodnius prolixus with Trypanosoma rangeli, which mimics natural infections and reveals physiological effects of infection upon the insect. Ferreira LL; Lorenzo MG; Elliot SL; Guarneri AA J Invertebr Pathol; 2010 Sep; 105(1):91-7. PubMed ID: 20546751 [TBL] [Abstract][Full Text] [Related]
55. Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Leyria J; Orchard I; Lange AB Sci Rep; 2020 Jul; 10(1):11431. PubMed ID: 32651410 [TBL] [Abstract][Full Text] [Related]
56. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. Fellet MR; Lorenzo MG; Elliot SL; Carrasco D; Guarneri AA PLoS One; 2014; 9(8):e105255. PubMed ID: 25136800 [TBL] [Abstract][Full Text] [Related]
57. Genotyping of Trypanosoma cruzi DTUs and Trypanosoma rangeli genetic groups in experimentally infected Rhodnius prolixus by PCR-RFLP. Sá AR; Dias GB; Kimoto KY; Steindel M; Grisard EC; Toledo MJ; Gomes ML Acta Trop; 2016 Apr; 156():115-21. PubMed ID: 26792202 [TBL] [Abstract][Full Text] [Related]
58. Rhodnius prolixus: identification of immune-related genes up-regulated in response to pathogens and parasites using suppressive subtractive hybridization. Ursic-Bedoya RJ; Lowenberger CA Dev Comp Immunol; 2007; 31(2):109-20. PubMed ID: 16824597 [TBL] [Abstract][Full Text] [Related]
59. Panstrongylus geniculatus and four other species of triatomine bug involved in the Trypanosoma cruzi enzootic cycle: high risk factors for Chagas' disease transmission in the Metropolitan District of Caracas, Venezuela. Carrasco HJ; Segovia M; Londoño JC; Ortegoza J; Rodríguez M; Martínez CE Parasit Vectors; 2014 Dec; 7():602. PubMed ID: 25532708 [TBL] [Abstract][Full Text] [Related]
60. Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. Elliot SL; Rodrigues Jde O; Lorenzo MG; Martins-Filho OA; Guarneri AA PLoS Negl Trop Dis; 2015 Mar; 9(3):e0003646. PubMed ID: 25793495 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]