These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35907152)

  • 1. Numerical simulation of the leakage flow of the hydrodynamically levitated centrifugal blood pump for extracorporeal mechanical circulatory support systems.
    Tsukiya T; Nishinaka T
    J Artif Organs; 2023 Sep; 26(3):176-183. PubMed ID: 35907152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Inspired Therapeutics Pediatric VAD: Benchtop Evaluation of Impeller Performance and Torques for MagLev Motor Design.
    Tompkins LH; Prina SR; Gellman BN; Morello GF; Roussel T; Kopechek JA; Williams SJ; Petit PC; Slaughter MS; Koenig SC; Dasse KA
    Cardiovasc Eng Technol; 2022 Apr; 13(2):307-317. PubMed ID: 34518953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preclinical study of a novel hydrodynamically levitated centrifugal pump for long-term cardiopulmonary support : In vivo performance during percutaneous cardiopulmonary support.
    Tsukiya T; Mizuno T; Takewa Y; Tatsumi E; Taenaka Y
    J Artif Organs; 2015 Dec; 18(4):300-6. PubMed ID: 25975380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid dynamics characterization and thrombogenicity assessment of a levitating centrifugal pump with different impeller designs.
    Bozzi S; Vesentini S; Santus M; Ghelli N; Fontanili P; Corbelli M; Fiore GB; Redaelli ACL
    Med Eng Phys; 2020 Sep; 83():26-33. PubMed ID: 32807345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size.
    Kosaka R; Sakota D; Nishida M; Maruyama O; Yamane T
    J Artif Organs; 2021 Jun; 24(2):157-163. PubMed ID: 33428006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid dynamic design for low hemolysis in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Nishida M; Maruyama O; Yamane T; Kuwana K; Kawaguchi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2732-5. PubMed ID: 24110292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow characteristics and hemolytic performance of the new Breethe centrifugal blood pump in comparison with the CentriMag and Rotaflow pumps.
    He G; Zhang J; Shah A; Berk ZB; Han L; Dong H; Griffith BP; Wu ZJ
    Int J Artif Organs; 2021 Nov; 44(11):829-837. PubMed ID: 34494469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.
    Kosaka R; Yasui K; Nishida M; Kawaguchi Y; Maruyama O; Yamane T
    Artif Organs; 2014 Sep; 38(9):818-22. PubMed ID: 25234763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump.
    Lv S; He ZP; Liu GM; Hu SS
    Comput Methods Biomech Biomed Engin; 2024 Oct; 27(13):1744-1755. PubMed ID: 37724774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.
    Kosaka R; Nishida M; Maruyama O; Yambe T; Imachi K; Yamane T
    Biomed Mater Eng; 2013; 23(1-2):37-47. PubMed ID: 23442235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Dynamic Analysis of Thrombus Inside a Centrifugal Blood Pump During Extracorporeal Mechanical Circulatory Support in a Porcine Model.
    Fujiwara T; Sakota D; Ohuchi K; Endo S; Tahara T; Murashige T; Kosaka R; Oi K; Mizuno T; Maruyama O; Arai H
    Artif Organs; 2017 Oct; 41(10):893-903. PubMed ID: 28321882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Channel impeller design for centrifugal blood pump in hybrid pediatric total artificial heart: Modeling, magnet integration, and hydraulic experiments.
    Hirschhorn M; Catucci N; Day SW; Stevens RM; Tchantchaleishvili V; Throckmorton AL
    Artif Organs; 2023 Apr; 47(4):680-694. PubMed ID: 36524792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Inspired Therapeutics Pediatric VAD: Computational Analysis and Characterization of VAD V3.
    Tompkins LH; Gellman BN; Prina SR; Morello GF; Roussel T; Kopechek JA; Williams SJ; Petit PC; Slaughter MS; Koenig SC; Dasse KA
    Cardiovasc Eng Technol; 2022 Aug; 13(4):624-637. PubMed ID: 35013917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump.
    Fang P; Du J; Yu S
    Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and evaluation of a single-pivot supported centrifugal blood pump.
    Yoshino M; Uemura M; Takahashi K; Watanabe N; Hoshi H; Ohuchi K; Nakamura M; Fujita H; Sakamoto T; Takatani S
    Artif Organs; 2001 Sep; 25(9):683-7. PubMed ID: 11722342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump.
    Boehning F; Timms DL; Amaral F; Oliveira L; Graefe R; Hsu PL; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Aug; 35(8):818-25. PubMed ID: 21843297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization.
    Wu J; Antaki JF; Wagner WR; Snyder TA; Paden BE; Borovetz HS
    ASAIO J; 2005; 51(5):636-43. PubMed ID: 16322730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic investigation of a novel rotary displacement blood pump for extracorporeal membrane oxygenation.
    Xue Q; Ren X; Gao B; Li S; Song Z; Ding J; Chang Y
    Int J Numer Method Biomed Eng; 2023 Jun; 39(6):e3705. PubMed ID: 37005088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of erythrocyte flow at a bearing gap in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Sakota D; Nishida M; Kawaguchi Y; Yamane T; Maruyama O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():270-3. PubMed ID: 26736252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Axial Gap Clearance in a Hydrodynamic-Passive Magnetically Levitated Rotary Blood Pump Using X-Ray Radiography.
    Thamsen B; Plamondon M; Granegger M; Schmid Daners M; Kaufmann R; Neels A; Meboldt M
    Artif Organs; 2018 May; 42(5):510-515. PubMed ID: 29341175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.