These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35907300)

  • 1. Urea hydrolysis and long-term storage of source-separated urine for reuse as fertiliser is insufficient for the removal of anthropogenic micropollutants.
    Monetti J; Nieradzik L; Freguia S; Choi PM; O'Brien JW; Thomas KV; Ledezma P
    Water Res; 2022 Aug; 222():118891. PubMed ID: 35907300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen recovery by urea hydrolysis and struvite precipitation from anthropogenic urine.
    Kabdaşli I; Tünay O; Işlek C; Erdinç E; Hüskalar S; Tatli MB
    Water Sci Technol; 2006; 53(12):305-12. PubMed ID: 16889267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine.
    Pronk W; Palmquist H; Biebow M; Boller M
    Water Res; 2006 Apr; 40(7):1405-12. PubMed ID: 16530802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fertiliser recovery from source-separated urine via membrane bioreactor and heat localized solar evaporation.
    Ren J; Hao D; Jiang J; Phuntsho S; Freguia S; Ni BJ; Dai P; Guan J; Shon HK
    Water Res; 2021 Dec; 207():117810. PubMed ID: 34741901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis.
    Volpin F; Chekli L; Phuntsho S; Cho J; Ghaffour N; Vrouwenvelder JS; Kyong Shon H
    Chemosphere; 2018 Jul; 203():482-489. PubMed ID: 29635160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-stage treatment for nitrogen and phosphorus recovery from human urine: Hydrolysis, precipitation and vacuum stripping.
    Tao W; Bayrakdar A; Wang Y; Agyeman F
    J Environ Manage; 2019 Nov; 249():109435. PubMed ID: 31450199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urea stabilisation and concentration for urine-diverting dry toilets: Urine dehydration in ash.
    Senecal J; Vinnerås B
    Sci Total Environ; 2017 May; 586():650-657. PubMed ID: 28215808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing the recovery of organic nitrogen from fresh human urine dosed with organic/inorganic acids and concentrated by evaporation in ambient conditions.
    Simha P; Vasiljev A; Randall DG; Vinnerås B
    Sci Total Environ; 2023 Jun; 879():163053. PubMed ID: 36966823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of source-separated urine by heat-activated peroxydisulfate.
    Lv Y; Li Z; Zhou X; Cheng S; Zheng L
    Sci Total Environ; 2020 Dec; 749():142213. PubMed ID: 33370919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkaline dehydration of source-separated fresh human urine: Preliminary insights into using different dehydration temperature and media.
    Simha P; Lalander C; Nordin A; Vinnerås B
    Sci Total Environ; 2020 Sep; 733():139313. PubMed ID: 32446074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of nitrogen during volume reduction of human urine using an on-site volume reduction system.
    Pahore MM; Ushijima K; Ito R; Funamizu N
    Environ Technol; 2012; 33(1-3):229-35. PubMed ID: 22519107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunities for Building-Scale Urine Diversion and Challenges for Implementation.
    Boyer TH; Saetta D
    Acc Chem Res; 2019 Apr; 52(4):886-895. PubMed ID: 30908003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of source-separated human urine by chemical oxidation.
    Zhang Y; Li Z; Zhao Y; Chen S; Mahmood IB
    Water Sci Technol; 2013; 67(9):1901-7. PubMed ID: 23656931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preservation of nutrients during long-term storage of source-separated yellowwater.
    Paruch AM
    Water Sci Technol; 2012; 66(4):804-9. PubMed ID: 22766870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of acetic acid addition on nitrogen speciation and bacterial communities during urine collection and storage.
    Saetta D; Zheng C; Leyva C; Boyer TH
    Sci Total Environ; 2020 Nov; 745():141010. PubMed ID: 32738689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of nutrient reuse from a source-separated domestic wastewater system in Indonesia--case study: ecological sanitation pilot plant in Surabaya.
    Malisie AF; Prihandrijanti M; Otterpohl R
    Water Sci Technol; 2007; 56(5):141-8. PubMed ID: 17881847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition factor of ammonification in stored urine with fecal contamination.
    Hotta S; Funamizu N
    Water Sci Technol; 2008; 58(6):1187-92. PubMed ID: 18845855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human urine fertiliser in the Brazilian semi-arid: Environmental assessment and water-energy-nutrient nexus.
    Medeiros DL; Queiroz LM; Cohim E; Almeida-Neto JA; Kiperstok A
    Sci Total Environ; 2020 Apr; 713():136145. PubMed ID: 31962240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective degradation of endogenous organic metabolites in acidified fresh human urine using sulphate radical-based advanced oxidation.
    Mehaidli AP; Mandal R; Simha P
    Water Res; 2024 Jun; 257():121751. PubMed ID: 38744062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of major compounds in source-separated urine.
    Udert KM; Larsen TA; Gujer W
    Water Sci Technol; 2006; 54(11-12):413-20. PubMed ID: 17302346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.