These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 35907330)
21. In-situ production of lactate driving the biotransformation of waste activated sludge to medium-chain fatty acid. Wu SL; Wei W; Ngo HH; Guo W; Wang C; Wang Y; Ni BJ J Environ Manage; 2023 Nov; 345():118524. PubMed ID: 37423191 [TBL] [Abstract][Full Text] [Related]
22. Adaptability of a Caproate-Producing Bacterium Contributes to Its Dominance in an Anaerobic Fermentation System. Wang H; Gu Y; Zhou W; Zhao D; Qiao Z; Zheng J; Gao J; Chen X; Ren C; Xu Y Appl Environ Microbiol; 2021 Sep; 87(20):e0120321. PubMed ID: 34378978 [TBL] [Abstract][Full Text] [Related]
23. Thermophilic caproic acid production from grass juice by sugar-based chain elongation. Sakarika M; Regueira A; Rabaey K; Ganigué R Sci Total Environ; 2023 Feb; 860():160501. PubMed ID: 36436634 [TBL] [Abstract][Full Text] [Related]
24. Effect of ultrasonic pretreatment on chain elongation of saccharified residue from food waste by anaerobic fermentation. Ma H; Lin Y; Jin Y; Gao M; Li H; Wang Q; Ge S; Cai L; Huang Z; Van Le Q; Xia C Environ Pollut; 2021 Jan; 268(Pt B):115936. PubMed ID: 33158614 [TBL] [Abstract][Full Text] [Related]
25. Anaerobic caproate production on carbon chain elongation: Effect of lactate/butyrate ratio, concentration and operation mode. Xie S; Ma J; Li L; He Q; Xu P; Ke S; Shi Z Bioresour Technol; 2021 Jun; 329():124893. PubMed ID: 33690059 [TBL] [Abstract][Full Text] [Related]
26. Thermodynamic and physiological study of caproate and 1,3-propanediol co-production through glycerol fermentation and fatty acids chain elongation. Leng L; Yang P; Mao Y; Wu Z; Zhang T; Lee PH Water Res; 2017 May; 114():200-209. PubMed ID: 28249211 [TBL] [Abstract][Full Text] [Related]
27. Enhancement of medium-chain fatty acids production from sludge anaerobic fermentation liquid under moderate sulfate reduction. Gao S; Chen Z; Zhu S; Yu J; Wen X J Environ Manage; 2024 Mar; 354():120459. PubMed ID: 38402788 [TBL] [Abstract][Full Text] [Related]
29. Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters. De Groof V; Coma M; Arnot T; Leak DJ; Lanham AB Waste Manag; 2021 May; 127():80-89. PubMed ID: 33932853 [TBL] [Abstract][Full Text] [Related]
30. Elucidating the microbial ecological mechanisms on the electro-fermentation of caproate production from acetate via ethanol-driven chain elongation. Cheng S; Liu Z; Varrone C; Zhou A; He Z; Li H; Zhang J; Liu W; Yue X Environ Res; 2022 Jan; 203():111875. PubMed ID: 34403665 [TBL] [Abstract][Full Text] [Related]
31. Microbial Ecological Mechanism for Long-Term Production of High Concentrations of Zhu X; Feng X; Liang C; Li J; Jia J; Feng L; Tao Y; Chen Y Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741616 [TBL] [Abstract][Full Text] [Related]
32. Revealing the Characteristics of Glucose- and Lactate-Based Chain Elongation for Caproate Production by Wang H; Zhou W; Gao J; Ren C; Xu Y mSystems; 2022 Oct; 7(5):e0053422. PubMed ID: 36073803 [TBL] [Abstract][Full Text] [Related]
33. Long-term, selective production of caproate in an anaerobic membrane bioreactor. Pan XR; Huang L; Fu XZ; Yuan YR; Liu HQ; Li WW; Yu L; Zhao QB; Zuo J; Chen L; Lam PK Bioresour Technol; 2020 Apr; 302():122865. PubMed ID: 32004814 [TBL] [Abstract][Full Text] [Related]
34. Regulation of hydraulic retention time on caproic acid production via two-phase anaerobic fermentation of Chinese cabbage waste with autopoietic electron donors. Chen R; Ji X; Chen Z; Huang L; Zhu J J Biotechnol; 2024 Feb; 381():1-10. PubMed ID: 38176540 [TBL] [Abstract][Full Text] [Related]
35. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Feng K; Li H; Zheng C Bioresour Technol; 2018 Dec; 270():180-188. PubMed ID: 30218934 [TBL] [Abstract][Full Text] [Related]
36. Lactate-mediated medium-chain fatty acid production from expired dairy and beverage waste. Bian B; Zhang W; Yu N; Yang W; Xu J; Logan BE; Saikaly PE Environ Sci Ecotechnol; 2024 Sep; 21():100424. PubMed ID: 38774191 [TBL] [Abstract][Full Text] [Related]
37. Conversion of wine lees and waste activated sludge into caproate and heptanoate: Thermodynamic and microbiological insights. Lanfranchi A; Desmond-Le Quéméner E; Magdalena JA; Cavinato C; Trably E Bioresour Technol; 2024 Sep; 408():131126. PubMed ID: 39029767 [TBL] [Abstract][Full Text] [Related]
38. Caproate production from xylose via the fatty acid biosynthesis pathway by genus Caproiciproducens dominated mixed culture fermentation. Tang J; Dai K; Wang QT; Zheng SJ; Hong SD; Jianxiong Zeng R; Zhang F Bioresour Technol; 2022 May; 351():126978. PubMed ID: 35276377 [TBL] [Abstract][Full Text] [Related]
39. Medium-Chain fatty acids and long-chain alcohols production from waste activated sludge via two-stage anaerobic fermentation. Wu SL; Wei W; Sun J; Xu Q; Dai X; Ni BJ Water Res; 2020 Nov; 186():116381. PubMed ID: 32916621 [TBL] [Abstract][Full Text] [Related]
40. Acidogenic fermentation of food waste to generate electron acceptors and donors towards medium-chain carboxylic acids production. Arhin SG; Cesaro A; Di Capua F; Esposito G J Environ Manage; 2023 Dec; 348():119379. PubMed ID: 37898048 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]