BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 35907493)

  • 1. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy.
    Khatoon E; Parama D; Kumar A; Alqahtani MS; Abbas M; Girisa S; Sethi G; Kunnumakkara AB
    Life Sci; 2022 Oct; 306():120827. PubMed ID: 35907493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focus on PD-1/PD-L1 as a Therapeutic Target in Ovarian Cancer.
    Dumitru A; Dobrica EC; Croitoru A; Cretoiu SM; Gaspar BS
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36292922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment.
    Hudson K; Cross N; Jordan-Mahy N; Leyland R
    Front Immunol; 2020; 11():568931. PubMed ID: 33193345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy.
    Li Q; Han J; Yang Y; Chen Y
    Front Immunol; 2022; 13():1070961. PubMed ID: 36601120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The meaning of PD-1/PD-L1 pathway in ovarian cancer pathogenesis].
    Piętak P; Pietrzyk N; Pawłowska A; Suszczyk D; Bednarek W; Kotarski J; Wertel I
    Wiad Lek; 2018; 71(5):1089-1094. PubMed ID: 30176647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker.
    Wang Z; Wu X
    Cancer Med; 2020 Nov; 9(21):8086-8121. PubMed ID: 32875727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Small Molecule Antagonist of PD-1/PD-L1 Interactions Acts as an Immune Checkpoint Inhibitor for NSCLC and Melanoma Immunotherapy.
    Wang Y; Gu T; Tian X; Li W; Zhao R; Yang W; Gao Q; Li T; Shim JH; Zhang C; Liu K; Lee MH
    Front Immunol; 2021; 12():654463. PubMed ID: 34054817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway.
    Wu Q; Jiang L; Li SC; He QJ; Yang B; Cao J
    Acta Pharmacol Sin; 2021 Jan; 42(1):1-9. PubMed ID: 32152439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions.
    Maghrouni A; Givari M; Jalili-Nik M; Mollazadeh H; Bibak B; Sadeghi MM; Afshari AR; Johnston TP; Sahebkar A
    Int Immunopharmacol; 2021 Apr; 93():107403. PubMed ID: 33581502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy.
    Setordzi P; Chang X; Liu Z; Wu Y; Zuo D
    Eur J Pharmacol; 2021 Mar; 895():173867. PubMed ID: 33460617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PD-1/PD-L1 in Cancer: Pathophysiological, Diagnostic and Therapeutic Aspects.
    Munari E; Mariotti FR; Quatrini L; Bertoglio P; Tumino N; Vacca P; Eccher A; Ciompi F; Brunelli M; Martignoni G; Bogina G; Moretta L
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-PD-L1/PD-1 immune therapies in ovarian cancer: basic mechanism and future clinical application.
    Mandai M; Hamanishi J; Abiko K; Matsumura N; Baba T; Konishi I
    Int J Clin Oncol; 2016 Jun; 21(3):456-61. PubMed ID: 26968587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage response and PD-1/PD-L1 pathway in ovarian cancer.
    Zhang T; Zheng S; Liu Y; Li X; Wu J; Sun Y; Liu G
    DNA Repair (Amst); 2021 Jun; 102():103112. PubMed ID: 33838550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.
    Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy.
    Ai L; Chen J; Yan H; He Q; Luo P; Xu Z; Yang X
    Drug Des Devel Ther; 2020; 14():3625-3649. PubMed ID: 32982171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation.
    Segovia-Mendoza M; Romero-Garcia S; Lemini C; Prado-Garcia H
    J Immunol Res; 2021; 2021():6668573. PubMed ID: 33506060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PD-1 and PD-L1: architects of immune symphony and immunotherapy breakthroughs in cancer treatment.
    Parvez A; Choudhary F; Mudgal P; Khan R; Qureshi KA; Farooqi H; Aspatwar A
    Front Immunol; 2023; 14():1296341. PubMed ID: 38106415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor-derived exosomes in the PD-1/PD-L1 axis: Significant regulators as well as promising clinical targets.
    Liang B; Hu X; Ding Y; Liu M
    J Cell Physiol; 2021 Jun; 236(6):4138-4151. PubMed ID: 33275291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy.
    Dermani FK; Samadi P; Rahmani G; Kohlan AK; Najafi R
    J Cell Physiol; 2019 Feb; 234(2):1313-1325. PubMed ID: 30191996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PD-L1 in Systemic Immunity: Unraveling Its Contribution to PD-1/PD-L1 Blockade Immunotherapy.
    Bocanegra A; Blanco E; Fernandez-Hinojal G; Arasanz H; Chocarro L; Zuazo M; Morente P; Vera R; Escors D; Kochan G
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.