BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35907553)

  • 1. Calculating PFAS interfacial adsorption as a function of salt concentration using model parameters determined from chemical structure.
    Le ST; Gao Y; Kibbey TCG; O'Carroll DM
    Sci Total Environ; 2022 Nov; 848():157663. PubMed ID: 35907553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new framework for modeling the effect of salt on interfacial adsorption of PFAS in environmental systems.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2021 Nov; 796():148893. PubMed ID: 34265607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fundamental model for calculating interfacial adsorption of complex ionic and nonionic PFAS mixtures in the presence of mixed salts.
    Gao Y; Le ST; Kibbey TCG; Glamore W; O'Carroll DM
    Environ Sci Process Impacts; 2023 Nov; 25(11):1830-1838. PubMed ID: 36987664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the impact of salt mixtures on the air-water interfacial behavior of PFAS.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2022 May; 819():151987. PubMed ID: 34843785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants.
    Guo B; Saleem H; Brusseau ML
    Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2019 Apr; 152():148-158. PubMed ID: 30665161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A group-contribution model for predicting the physicochemical behavior of PFAS components for understanding environmental fate.
    Le ST; Kibbey TCG; Weber KP; Glamore WC; O'Carroll DM
    Sci Total Environ; 2021 Apr; 764():142882. PubMed ID: 33127153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions.
    Brusseau ML; Van Glubt S
    Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture.
    Silva JAK; Martin WA; McCray JE
    J Contam Hydrol; 2021 Jan; 236():103731. PubMed ID: 33183849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSPR-based prediction of air-water interfacial adsorption coefficients for nonionic PFAS with large headgroups.
    Brusseau ML
    Chemosphere; 2023 Nov; 340():139960. PubMed ID: 37633613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces.
    Brusseau ML; Van Glubt S
    Water Res; 2019 Sep; 161():17-26. PubMed ID: 31174056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.
    Van Glubt S; Brusseau ML
    Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using foam fractionation to estimate PFAS air-water interface adsorption behaviour at ng/L and µg/L concentrations.
    Buckley T; Vuong T; Karanam K; Vo PHN; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Jul; 239():120028. PubMed ID: 37209512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of Poly- and Perfluoroalkyl Substances at the Air-Water Interface.
    Schaefer CE; Culina V; Nguyen D; Field J
    Environ Sci Technol; 2019 Nov; 53(21):12442-12448. PubMed ID: 31577432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone.
    Silva JAK; Šimůnek J; McCray JE
    J Contam Hydrol; 2022 May; 247():103984. PubMed ID: 35279485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media.
    Huang D; Saleem H; Guo B; Brusseau ML
    Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unification of surface tension isotherms of PFOA or GenX salts in electrolyte solutions by mean ionic activity.
    Wang J; Niven RK
    Chemosphere; 2021 Oct; 280():130715. PubMed ID: 33965869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Concentration- and Ionic-Strength-Dependent Air-Water Interfacial Partitioning Parameters of PFASs Using Quantitative Structure-Property Relationships (QSPRs).
    Stults JF; Choi YJ; Rockwell C; Schaefer CE; Nguyen DD; Knappe DRU; Illangasekare TH; Higgins CP
    Environ Sci Technol; 2023 Apr; 57(13):5203-5215. PubMed ID: 36962006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media.
    Brusseau ML; Guo B; Huang D; Yan N; Lyu Y
    Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2021 Feb; 190():116778. PubMed ID: 33387950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.