BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35907553)

  • 21. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2021 Feb; 190():116778. PubMed ID: 33387950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets.
    Trinh V; Malloy CS; Durkin TJ; Gadh A; Savagatrup S
    ACS Sens; 2022 May; 7(5):1514-1523. PubMed ID: 35442626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media.
    Brusseau ML
    Sci Total Environ; 2023 Aug; 884():163730. PubMed ID: 37120024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone.
    Silva JAK; Martin WA; Johnson JL; McCray JE
    J Contam Hydrol; 2019 Jun; 223():103472. PubMed ID: 30979513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation.
    Buckley T; Karanam K; Han H; Vo HNP; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Feb; 230():119532. PubMed ID: 36584659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamical and rheological properties of fluorinated surfactant films adsorbed at the pressurized CO2-H2O interface.
    Tewes F; Krafft MP; Boury F
    Langmuir; 2011 Jul; 27(13):8144-52. PubMed ID: 21630699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media.
    Ji Y; Yan N; Brusseau ML; Guo B; Zheng X; Dai M; Liu H; Li X
    Environ Sci Technol; 2021 Aug; 55(15):10480-10490. PubMed ID: 34288652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of per- and polyfluoroalkyl substances (PFAS) from water with porous organic polymers.
    Zhang Y; Wang B; Ma S; Zhang Q
    Chemosphere; 2024 Jan; 346():140600. PubMed ID: 37918540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.
    Fainerman VB; Aksenenko EV; Krägel J; Miller R
    Adv Colloid Interface Sci; 2016 Jul; 233():200-222. PubMed ID: 26198014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Air-water interfacial areas relevant for transport of per and poly-fluoroalkyl substances.
    Brusseau ML; Guo B
    Water Res; 2021 Dec; 207():117785. PubMed ID: 34731664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces.
    Brusseau ML; Guo B
    Chemosphere; 2022 Sep; 302():134938. PubMed ID: 35568214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption and structure of the adsorbed layer of ionic surfactants.
    Ivanov IB; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Nov; 123-126():189-212. PubMed ID: 16860769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances.
    Brusseau ML
    Environ Pollut; 2019 Nov; 254(Pt B):113102. PubMed ID: 31491699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive retention model for PFAS transport in subsurface systems.
    Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO
    Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption at the biocompatible α-pinene-water interface and emulsifying properties of two eco-friendly surfactants.
    Trujillo-Cayado LA; Ramírez P; Alfaro MC; Ruíz M; Muñoz J
    Colloids Surf B Biointerfaces; 2014 Oct; 122():623-629. PubMed ID: 25129697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal-Organic Frameworks.
    Li R; Alomari S; Islamoglu T; Farha OK; Fernando S; Thagard SM; Holsen TM; Wriedt M
    Environ Sci Technol; 2021 Nov; 55(22):15162-15171. PubMed ID: 34714637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental impact of PFAS: Filling data gaps using theoretical quantum chemistry and QSPR modeling.
    Mudlaff M; Sosnowska A; Gorb L; Bulawska N; Jagiello K; Puzyn T
    Environ Int; 2024 Mar; 185():108568. PubMed ID: 38493737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media.
    Lyu Y; Brusseau ML
    Sci Total Environ; 2020 Apr; 713():136744. PubMed ID: 32019053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Removal of Perfluorinated Chemicals from Contaminated Water Sources Using Magnetic Fluorinated Polymer Sorbents.
    Tan X; Dewapriya P; Prasad P; Chang Y; Huang X; Wang Y; Gong X; Hopkins TE; Fu C; Thomas KV; Peng H; Whittaker AK; Zhang C
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202213071. PubMed ID: 36225164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.