These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35907716)

  • 1. Coexistence of oscillatory and reduced states on a spherical field controlled by electrical potential.
    Kubodera Y; Horisaka M; Kuze M; Suematsu NJ; Amemiya T; Steinbock O; Nakata S
    Chaos; 2022 Jul; 32(7):073103. PubMed ID: 35907716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switching between Two Oscillatory States Depending on the Electrical Potential.
    Kuze M; Horisaka M; Suematsu NJ; Amemiya T; Steinbock O; Nakata S
    J Phys Chem B; 2021 Apr; 125(14):3638-3643. PubMed ID: 33797905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Wave Propagation in the Belousov-Zhabotinsky Reaction Controlled by Electrical Potential.
    Kuze M; Horisaka M; Suematsu NJ; Amemiya T; Steinbock O; Nakata S
    J Phys Chem A; 2019 Jun; 123(23):4853-4857. PubMed ID: 31094190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traveling waves propagating through coupled microbeads in the Belousov-Zhabotinsky reaction.
    Kuze M; Kitahata H; Nakata S
    Phys Chem Chem Phys; 2021 Nov; 23(42):24175-24179. PubMed ID: 34673865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling chemical oscillations in heterogeneous Belousov-Zhabotinsky gels via mechanical strain.
    Yashin VV; Van Vliet KJ; Balazs AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046214. PubMed ID: 19518319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal switch of oscillation frequency in Belousov-Zhabotinsky liquid marbles.
    Adamatzky A; Fullarton C; Phillips N; De Lacy Costello B; Draper TC
    R Soc Open Sci; 2019 Apr; 6(4):190078. PubMed ID: 31183147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of New Belousov-Zhabotinsky Micro-Oscillators on the Basis of Silica Gel Beads.
    Mallphanov IL; Vanag VK
    J Phys Chem A; 2020 Jan; 124(2):272-282. PubMed ID: 31899640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction.
    Rossi F; Vanag VK; Epstein IR
    Chemistry; 2011 Feb; 17(7):2138-45. PubMed ID: 21254264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-oscillating chemoelectrical interface of solution-gated ion-sensitive field-effect transistor based on Belousov-Zhabotinsky reaction.
    Sakata T; Nishitani S; Yasuoka Y; Himori S; Homma K; Masuda T; Akimoto AM; Sawada K; Yoshida R
    Sci Rep; 2022 Feb; 12(1):2949. PubMed ID: 35194095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of two bifurcation regimes in a closed ferroin-catalyzed Belousov-Zhabotinsky reaction.
    Wang J; Zhao J; Chen Y; Gao Q; Wang Y
    J Phys Chem A; 2005 Feb; 109(7):1374-81. PubMed ID: 16833454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillatory microcells connected on a ring by chemical waves.
    Safonov DA; Vanag VK
    Chaos; 2021 Jun; 31(6):063134. PubMed ID: 34241281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of a 1D array of inhibitory coupled chemical oscillators in microdroplets with global negative feedback.
    Proskurkin IS; Vanag VK
    Phys Chem Chem Phys; 2018 Jun; 20(23):16126-16137. PubMed ID: 29855029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information coding with frequency of oscillations in Belousov-Zhabotinsky encapsulated disks.
    Gorecki J; Gorecka JN; Adamatzky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042910. PubMed ID: 24827316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beating polymer gels coupled with a nonlinear chemical reaction.
    Yoshida R; Kokufuta E; Yamaguchi T
    Chaos; 1999 Jun; 9(2):260-266. PubMed ID: 12779823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Belousov-Zhabotinsky Reaction in Thermoresponsive Core-Shell Hydrogel Microspheres with a Tris(2,2'-bipyridyl)ruthenium Catalyst in the Core.
    Inui K; Watanabe T; Minato H; Matsui S; Ishikawa K; Yoshida R; Suzuki D
    J Phys Chem B; 2020 May; 124(18):3828-3835. PubMed ID: 32293889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical memory with states coded in light controlled oscillations of interacting Belousov-Zhabotinsky droplets.
    Gizynski K; Gorecki J
    Phys Chem Chem Phys; 2017 Mar; 19(9):6519-6531. PubMed ID: 28197558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators.
    Ohno K; Ogawa T; Suematsu NJ
    Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex oscillations in the Belousov-Zhabotinsky batch reaction with methylmalonic acid and manganese(ii).
    Frerichs GA; Yengi D
    RSC Adv; 2021 Apr; 11(27):16435-16444. PubMed ID: 35479119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.
    Hastings HM; Sobel SG; Field RJ; Bongiovi D; Burke B; Richford D; Finzel K; Garuthara M
    J Phys Chem A; 2008 May; 112(21):4715-8. PubMed ID: 18459756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling complex transient oscillations for the BZ reaction in a batch reactor.
    Johnson BR; Scott SK; Thompson BW
    Chaos; 1997 Jun; 7(2):350-358. PubMed ID: 12779662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.