BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35907779)

  • 1. MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction.
    Wu Q; Deng Z; Pan X; Shen HB; Choi KS; Wang S; Wu J; Yu DJ
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35907779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MLNGCF: circRNA-disease associations prediction with multilayer attention neural graph-based collaborative filtering.
    Wu Q; Deng Z; Zhang W; Pan X; Choi KS; Zuo Y; Shen HB; Yu DJ
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37561093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of circRNA-disease associations via multi-model fusion and ensemble learning.
    Yang J; Lei X; Zhang F
    J Cell Mol Med; 2024 Apr; 28(7):e18180. PubMed ID: 38506066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DPMGCDA: Deciphering circRNA-Drug Sensitivity Associations with Dual Perspective Learning and Path-Masked Graph Autoencoder.
    Luo Y; Deng L
    J Chem Inf Model; 2024 May; 64(10):4359-4372. PubMed ID: 38745420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential circRNA-Disease Association Prediction Using DeepWalk and Nonnegative Matrix Factorization.
    Qiao LJ; Gao Z; Ji CM; Liu ZH; Zheng CH; Wang YT
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3154-3162. PubMed ID: 37018084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning.
    Kouhsar M; Kashaninia E; Mardani B; Rabiee HR
    BMC Bioinformatics; 2022 Aug; 23(1):331. PubMed ID: 35953785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder.
    Wang H; Han J; Li H; Duan L; Liu Z; Cheng H
    Math Biosci Eng; 2023 Feb; 20(5):7957-7980. PubMed ID: 37161181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network.
    Peng L; Yang C; Chen Y; Liu W
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring circRNA-drug sensitivity associations via dual hierarchical attention networks and multiple kernel fusion.
    Lu S; Liang Y; Li L; Liao S; Zou Y; Yang C; Ouyang D
    BMC Genomics; 2023 Dec; 24(1):796. PubMed ID: 38129810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model of circRNA-associated diseases based on a graph neural network: prediction and case studies for follow-up experimental validation.
    Niu M; Wang C; Zhang Z; Zou Q
    BMC Biol; 2024 Jan; 22(1):24. PubMed ID: 38281919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting circRNA-drug sensitivity associations by learning multimodal networks using graph auto-encoders and attention mechanism.
    Yang B; Chen H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36617209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting circRNA-drug resistance associations based on a multimodal graph representation learning framework.
    Liu Z; Dai Q; Yu X; Duan X; Wang C
    IEEE J Biomed Health Inform; 2023 Jul; PP():. PubMed ID: 37498762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DETHACDA: A Dual-view Edge and Topology Hybrid Attention Model for CircRNA-Disease Associations Prediction.
    Yin W; Wang S; Qiao S; Zhao Y; Wu W; Pang S; Lv Z
    IEEE J Biomed Health Inform; 2023 Jun; PP():. PubMed ID: 37307176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning framework based on multi-source feature fusion for circRNA-disease association prediction.
    Wang L; Wong L; Li Z; Huang Y; Su X; Zhao B; You Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.