These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 35907779)

  • 1. MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction.
    Wu Q; Deng Z; Pan X; Shen HB; Choi KS; Wang S; Wu J; Yu DJ
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35907779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MLNGCF: circRNA-disease associations prediction with multilayer attention neural graph-based collaborative filtering.
    Wu Q; Deng Z; Zhang W; Pan X; Choi KS; Zuo Y; Shen HB; Yu DJ
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37561093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks.
    Bamunu Mudiyanselage T; Lei X; Senanayake N; Zhang Y; Pan Y
    Methods; 2022 Feb; 198():32-44. PubMed ID: 34748953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CircR2Disease v2.0: An Updated Web Server for Experimentally Validated circRNA-disease Associations and Its Application.
    Fan C; Lei X; Tie J; Zhang Y; Wu FX; Pan Y
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):435-445. PubMed ID: 34856391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of circRNA-disease associations via multi-model fusion and ensemble learning.
    Yang J; Lei X; Zhang F
    J Cell Mol Med; 2024 Apr; 28(7):e18180. PubMed ID: 38506066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations.
    Ji C; Liu Z; Wang Y; Ni J; Zheng C
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iGRLCDA: identifying circRNA-disease association based on graph representation learning.
    Zhang HY; Wang L; You ZH; Hu L; Zhao BW; Li ZW; Li YM
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DETHACDA: A Dual-View Edge and Topology Hybrid Attention Model for CircRNA-Disease Associations Prediction.
    Yin W; Wang S; Qiao S; Zhao Y; Wu W; Pang S; Lv Z
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4421-4431. PubMed ID: 37307176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NSL2CD: identifying potential circRNA-disease associations based on network embedding and subspace learning.
    Xiao Q; Fu Y; Yang Y; Dai J; Luo J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33954582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model.
    Liang Y; Zhang ZQ; Liu NN; Wu YN; Gu CL; Wang YL
    BMC Bioinformatics; 2022 May; 23(1):189. PubMed ID: 35590258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GBDTCDA: Predicting circRNA-disease Associations Based on Gradient Boosting Decision Tree with Multiple Biological Data Fusion.
    Lei X; Fang Z
    Int J Biol Sci; 2019; 15(13):2911-2924. PubMed ID: 31853227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.