These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35907928)

  • 1. Intravital 3D visualization and segmentation of murine neural networks at micron resolution.
    Lautman Z; Winetraub Y; Blacher E; Yu C; Terem I; Chibukhchyan A; Marshel JH; de la Zerda A
    Sci Rep; 2022 Jul; 12(1):13130. PubMed ID: 35907928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing in vivo brain neural structures using volume rendered feature spaces.
    Nakao M; Kurebayashi K; Sugiura T; Sato T; Sawada K; Kawakami R; Nemoto T; Minato K; Matsuda T
    Comput Biol Med; 2014 Oct; 53():85-93. PubMed ID: 25129020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speckle modulation enables high-resolution wide-field human brain tumor margin detection and in vivo murine neuroimaging.
    Yecies D; Liba O; SoRelle ED; Dutta R; Yuan E; Vogel H; Grant GA; de la Zerda A
    Sci Rep; 2019 Jul; 9(1):10388. PubMed ID: 31316099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity.
    Wang H; Magnain C; Wang R; Dubb J; Varjabedian A; Tirrell LS; Stevens A; Augustinack JC; Konukoglu E; Aganj I; Frosch MP; Schmahmann JD; Fischl B; Boas DA
    Neuroimage; 2018 Jan; 165():56-68. PubMed ID: 29017866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain.
    Baran U; Zhu W; Choi WJ; Omori M; Zhang W; Alkayed NJ; Wang RK
    J Neurosci Methods; 2016 Sep; 270():132-137. PubMed ID: 27328369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural network for enhancing signal-to-noise ratio and contrast in photothermal optical coherence tomography.
    Salimi M; Tabatabaei N; Villiger M
    Sci Rep; 2024 May; 14(1):10264. PubMed ID: 38704427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual histology of the human heart using optical coherence tomography.
    Ambrosi CM; Moazami N; Rollins AM; Efimov IR
    J Biomed Opt; 2009; 14(5):054002. PubMed ID: 19895104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mirau-based line-field confocal optical coherence tomography for three-dimensional high-resolution skin imaging.
    Xue W; Ogien J; Bulkin P; Coutrot AL; Dubois A
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35962466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the efficacy of 2D and 3D CNN algorithms in OCT-based glaucoma detection.
    Rasel RK; Wu F; Chiariglione M; Choi SS; Doble N; Gao XR
    Sci Rep; 2024 May; 14(1):11758. PubMed ID: 38783015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D reconstruction of cochlea using optical coherence tomography.
    Karvonen T; Uranishi Y; Sakamoto T; Tona Y; Okamoto K; Tamura H; Kuroda T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5905-5908. PubMed ID: 28269598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denoising and 4D visualization of OCT images.
    Gargesha M; Jenkins MW; Rollins AM; Wilson DL
    Opt Express; 2008 Aug; 16(16):12313-33. PubMed ID: 18679509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region.
    Tian J; Varga B; Somfai GM; Lee WH; Smiddy WE; DeBuc DC
    PLoS One; 2015; 10(8):e0133908. PubMed ID: 26258430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography.
    Huang R; Xie W; Alison Noble J
    Med Image Anal; 2018 Jul; 47():127-139. PubMed ID: 29715691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography.
    Finke M; Kantelhardt S; Schlaefer A; Bruder R; Lankenau E; Giese A; Schweikard A
    Int J Med Robot; 2012 Sep; 8(3):327-36. PubMed ID: 22911978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging.
    Yamanaka M; Teranishi T; Kawagoe H; Nishizawa N
    Sci Rep; 2016 Aug; 6():31715. PubMed ID: 27546517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional segmentation and depth-encoded visualization of choroidal vasculature using swept-source optical coherence tomography.
    Zhou H; Bacci T; Freund KB; Wang RK
    Exp Biol Med (Maywood); 2021 Oct; 246(20):2238-2245. PubMed ID: 34259053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.