These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35907977)

  • 1. A maternal high-fat diet induces fetal origins of NASH-HCC in mice.
    Takiyama T; Sera T; Nakamura M; Hoshino M; Uesugi K; Horike SI; Meguro-Horike M; Bessho R; Takiyama Y; Kitsunai H; Takeda Y; Sawamoto K; Yagi N; Nishikawa Y; Takiyama Y
    Sci Rep; 2022 Jul; 12(1):13136. PubMed ID: 35907977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HILPDA promotes NASH-driven HCC development by restraining intracellular fatty acid flux in hypoxia.
    Povero D; Chen Y; Johnson SM; McMahon CE; Pan M; Bao H; Petterson XT; Blake E; Lauer KP; O'Brien DR; Yu Y; Graham RP; Taner T; Han X; Razidlo GL; Liu J
    J Hepatol; 2023 Aug; 79(2):378-393. PubMed ID: 37061197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digoxin improves steatohepatitis with differential involvement of liver cell subsets in mice through inhibition of PKM2 transactivation.
    Zhao P; Han SN; Arumugam S; Yousaf MN; Qin Y; Jiang JX; Torok NJ; Chen Y; Mankash MS; Liu J; Li J; Iwakiri Y; Ouyang X
    Am J Physiol Gastrointest Liver Physiol; 2019 Oct; 317(4):G387-G397. PubMed ID: 31411894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of NASH-Related HCC by Farnesyltransferase Inhibitor through Inhibition of Inflammation and Hypoxia-Inducible Factor-1α Expression.
    Yamada K; Tanaka T; Kai K; Matsufuji S; Ito K; Kitajima Y; Manabe T; Noshiro H
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ezetimibe suppresses development of liver tumors by inhibiting angiogenesis in mice fed a high-fat diet.
    Miura K; Ohnishi H; Morimoto N; Minami S; Ishioka M; Watanabe S; Tsukui M; Takaoka Y; Nomoto H; Isoda N; Yamamoto H
    Cancer Sci; 2019 Feb; 110(2):771-783. PubMed ID: 30520543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models of nonalcoholic steatohepatitis potentiated by chemical inducers leading to hepatocellular carcinoma.
    Márquez-Quiroga LV; Arellanes-Robledo J; Vásquez-Garzón VR; Villa-Treviño S; Muriel P
    Biochem Pharmacol; 2022 Jan; 195():114845. PubMed ID: 34801522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatocellular carcinoma in a mouse model fed a choline-deficient, L-amino acid-defined, high-fat diet.
    Ikawa-Yoshida A; Matsuo S; Kato A; Ohmori Y; Higashida A; Kaneko E; Matsumoto M
    Int J Exp Pathol; 2017 Aug; 98(4):221-233. PubMed ID: 28895242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porphyromonas gingivalis-odontogenic infection is the potential risk for progression of nonalcoholic steatohepatitis-related neoplastic nodule formation.
    Sakamoto S; Nagasaki A; Shrestha M; Shintani T; Watanabe A; Furusho H; Chayama K; Takata T; Miyauchi M
    Sci Rep; 2023 Jun; 13(1):9350. PubMed ID: 37291206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p.
    Sun Y; Wang Q; Zhang Y; Geng M; Wei Y; Liu Y; Liu S; Petersen RB; Yue J; Huang K; Zheng L
    J Hepatol; 2020 Sep; 73(3):603-615. PubMed ID: 32593682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin-22 Ameliorates Neutrophil-Driven Nonalcoholic Steatohepatitis Through Multiple Targets.
    Hwang S; He Y; Xiang X; Seo W; Kim SJ; Ma J; Ren T; Park SH; Zhou Z; Feng D; Kunos G; Gao B
    Hepatology; 2020 Aug; 72(2):412-429. PubMed ID: 31705800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cholecystokinin Receptor Antagonist Halts Nonalcoholic Steatohepatitis and Prevents Hepatocellular Carcinoma.
    Tucker RD; Ciofoaia V; Nadella S; Gay MD; Cao H; Huber M; Safronenka A; Shivapurkar N; Kallakury B; Kruger AJ; Kroemer AHK; Smith JP
    Dig Dis Sci; 2020 Jan; 65(1):189-203. PubMed ID: 31297627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant FGFR4 signaling worsens nonalcoholic steatohepatitis in FGF21KO mice.
    Yu Y; Shi X; Zheng Q; Wang X; Liu X; Tan M; Lv G; Zhang P; Martin RC; Li Y
    Int J Biol Sci; 2021; 17(10):2576-2589. PubMed ID: 34326695
    [No Abstract]   [Full Text] [Related]  

  • 13. Fibrinogen-like protein 2 aggravates nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid metabolism disorder.
    Hu J; Wang H; Li X; Liu Y; Mi Y; Kong H; Xi D; Yan W; Luo X; Ning Q; Wang X
    Theranostics; 2020; 10(21):9702-9720. PubMed ID: 32863955
    [No Abstract]   [Full Text] [Related]  

  • 14. Nonalcoholic Steatohepatitis and HCC in a Hyperphagic Mouse Accelerated by Western Diet.
    Ganguly S; Muench GA; Shang L; Rosenthal SB; Rahman G; Wang R; Wang Y; Kwon HC; Diomino AM; Kisseleva T; Soorosh P; Hosseini M; Knight R; Schnabl B; Brenner DA; Dhar D
    Cell Mol Gastroenterol Hepatol; 2021; 12(3):891-920. PubMed ID: 34062281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pu-erh tea extract ameliorates high-fat diet-induced nonalcoholic steatohepatitis and insulin resistance by modulating hepatic IL-6/STAT3 signaling in mice.
    Cai X; Fang C; Hayashi S; Hao S; Zhao M; Tsutsui H; Nishiguchi S; Sheng J
    J Gastroenterol; 2016 Aug; 51(8):819-29. PubMed ID: 26794005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA expression analysis in high fat diet-induced NAFLD-NASH-HCC progression: study on C57BL/6J mice.
    Tessitore A; Cicciarelli G; Del Vecchio F; Gaggiano A; Verzella D; Fischietti M; Mastroiaco V; Vetuschi A; Sferra R; Barnabei R; Capece D; Zazzeroni F; Alesse E
    BMC Cancer; 2016 Jan; 16():3. PubMed ID: 26728044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of CC chemokine receptor 9 in the progression of murine and human non-alcoholic steatohepatitis.
    Morikawa R; Nakamoto N; Amiya T; Chu PS; Koda Y; Teratani T; Suzuki T; Kurebayashi Y; Ueno A; Taniki N; Miyamoto K; Yamaguchi A; Shiba S; Katayama T; Yoshida K; Takada Y; Ishihara R; Ebinuma H; Sakamoto M; Kanai T
    J Hepatol; 2021 Mar; 74(3):511-521. PubMed ID: 33038434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peretinoin, an acyclic retinoid, suppresses steatohepatitis and tumorigenesis by activating autophagy in mice fed an atherogenic high-fat diet.
    Okada H; Takabatake R; Honda M; Takegoshi K; Yamashita T; Nakamura M; Shirasaki T; Sakai Y; Shimakami T; Nagata N; Takamura T; Tanaka T; Kaneko S
    Oncotarget; 2017 Jun; 8(25):39978-39993. PubMed ID: 28591717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agonist of RORA Attenuates Nonalcoholic Fatty Liver Progression in Mice via Up-regulation of MicroRNA 122.
    Chai C; Cox B; Yaish D; Gross D; Rosenberg N; Amblard F; Shemuelian Z; Gefen M; Korach A; Tirosh O; Lanton T; Link H; Tam J; Permyakova A; Ozhan G; Citrin J; Liao H; Tannous M; Hahn M; Axelrod J; Arretxe E; Alonso C; Martinez-Arranz I; Betés PO; Safadi R; Salhab A; Amer J; Tber Z; Mengshetti S; Giladi H; Schinazi RF; Galun E
    Gastroenterology; 2020 Sep; 159(3):999-1014.e9. PubMed ID: 32450149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers.
    Gohir W; Kennedy KM; Wallace JG; Saoi M; Bellissimo CJ; Britz-McKibbin P; Petrik JJ; Surette MG; Sloboda DM
    J Physiol; 2019 Jun; 597(12):3029-3051. PubMed ID: 31081119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.