These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
483 related articles for article (PubMed ID: 35908284)
1. CD47-SIRPα blocking-based immunotherapy: Current and prospective therapeutic strategies. Bouwstra R; van Meerten T; Bremer E Clin Transl Med; 2022 Aug; 12(8):e943. PubMed ID: 35908284 [TBL] [Abstract][Full Text] [Related]
2. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Matlung HL; Szilagyi K; Barclay NA; van den Berg TK Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703 [TBL] [Abstract][Full Text] [Related]
3. Development of Bispecific Antibody Derivatives for Cancer Immunotherapy. He Y; Helfrich W; Bremer E Methods Mol Biol; 2019; 1884():335-347. PubMed ID: 30465214 [TBL] [Abstract][Full Text] [Related]
4. Cancer immunotherapy targeting the CD47/SIRPα axis. Weiskopf K Eur J Cancer; 2017 May; 76():100-109. PubMed ID: 28286286 [TBL] [Abstract][Full Text] [Related]
5. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. Chen SH; Dominik PK; Stanfield J; Ding S; Yang W; Kurd N; Llewellyn R; Heyen J; Wang C; Melton Z; Van Blarcom T; Lindquist KC; Chaparro-Riggers J; Salek-Ardakani S J Immunother Cancer; 2021 Oct; 9(10):. PubMed ID: 34599020 [TBL] [Abstract][Full Text] [Related]
6. Blocking "don't eat me" signal of CD47-SIRPα in hematological malignancies, an in-depth review. Russ A; Hua AB; Montfort WR; Rahman B; Riaz IB; Khalid MU; Carew JS; Nawrocki ST; Persky D; Anwer F Blood Rev; 2018 Nov; 32(6):480-489. PubMed ID: 29709247 [TBL] [Abstract][Full Text] [Related]
7. Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis. Wang Y; Zhao C; Liu Y; Wang C; Jiang H; Hu Y; Wu J Mol Pharm; 2022 May; 19(5):1273-1293. PubMed ID: 35436123 [TBL] [Abstract][Full Text] [Related]
8. CD47/SIRPα axis: bridging innate and adaptive immunity. van Duijn A; Van der Burg SH; Scheeren FA J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35831032 [TBL] [Abstract][Full Text] [Related]
9. The CD47-SIRPα axis is a promising target for cancer immunotherapies. Hao Y; Zhou X; Li Y; Li B; Cheng L Int Immunopharmacol; 2023 Jul; 120():110255. PubMed ID: 37187126 [TBL] [Abstract][Full Text] [Related]
10. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity. Kuo TC; Chen A; Harrabi O; Sockolosky JT; Zhang A; Sangalang E; Doyle LV; Kauder SE; Fontaine D; Bollini S; Han B; Fu YX; Sim J; Pons J; Wan HI J Hematol Oncol; 2020 Nov; 13(1):160. PubMed ID: 33256806 [TBL] [Abstract][Full Text] [Related]
12. "Velcro" engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis. Ho CC; Guo N; Sockolosky JT; Ring AM; Weiskopf K; Özkan E; Mori Y; Weissman IL; Garcia KC J Biol Chem; 2015 May; 290(20):12650-63. PubMed ID: 25837251 [TBL] [Abstract][Full Text] [Related]
13. Blockade of dual immune checkpoint inhibitory signals with a CD47/PD-L1 bispecific antibody for cancer treatment. Wang R; Zhang C; Cao Y; Wang J; Jiao S; Zhang J; Wang M; Tang P; Ouyang Z; Liang W; Mao Y; Wang A; Li G; Zhang J; Wang M; Wang S; Gui X Theranostics; 2023; 13(1):148-160. PubMed ID: 36593962 [No Abstract] [Full Text] [Related]
14. SIRPα-Antibody Fusion Proteins Selectively Bind and Eliminate Dual Antigen-Expressing Tumor Cells. Piccione EC; Juarez S; Tseng S; Liu J; Stafford M; Narayanan C; Wang L; Weiskopf K; Majeti R Clin Cancer Res; 2016 Oct; 22(20):5109-5119. PubMed ID: 27126995 [TBL] [Abstract][Full Text] [Related]
15. The regulation of CD47-SIRPα signaling axis by microRNAs in combination with conventional cytotoxic drugs together with the help of nano-delivery: a choice for therapy? Beizavi Z; Gheibihayat SM; Moghadasian H; Zare H; Yeganeh BS; Askari H; Vakili S; Tajbakhsh A; Savardashtaki A Mol Biol Rep; 2021 Jul; 48(7):5707-5722. PubMed ID: 34275112 [TBL] [Abstract][Full Text] [Related]
16. Progress of CD47 immune checkpoint blockade agents in anticancer therapy: a hematotoxic perspective. Chen YC; Shi W; Shi JJ; Lu JJ J Cancer Res Clin Oncol; 2022 Jan; 148(1):1-14. PubMed ID: 34609596 [TBL] [Abstract][Full Text] [Related]
17. Is CD47 an innate immune checkpoint for tumor evasion? Liu X; Kwon H; Li Z; Fu YX J Hematol Oncol; 2017 Jan; 10(1):12. PubMed ID: 28077173 [TBL] [Abstract][Full Text] [Related]
18. Deciphering the role of CD47 in cancer immunotherapy. Liu Y; Weng L; Wang Y; Zhang J; Wu Q; Zhao P; Shi Y; Wang P; Fang L J Adv Res; 2024 Sep; 63():129-158. PubMed ID: 39167629 [TBL] [Abstract][Full Text] [Related]
19. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Wang Y; Ni H; Zhou S; He K; Gao Y; Wu W; Wu M; Wu Z; Qiu X; Zhou Y; Chen B; Pan D; Huang C; Li M; Bian Y; Yang M; Miao L; Liu J Cancer Immunol Immunother; 2021 Feb; 70(2):365-376. PubMed ID: 32761423 [TBL] [Abstract][Full Text] [Related]
20. SIRPα-antibody fusion proteins stimulate phagocytosis and promote elimination of acute myeloid leukemia cells. Ponce LP; Fenn NC; Moritz N; Krupka C; Kozik JH; Lauber K; Subklewe M; Hopfner KP Oncotarget; 2017 Feb; 8(7):11284-11301. PubMed ID: 28061465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]