These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35908403)

  • 1. MOF-derived MnO@C with high activity for electric field-assisted catalytic oxidation of aqueous pollutants.
    Zhai LF; Chen YY; Hu Y; Pan YX; Sun M; Yu J; Wang Y; Kong W
    J Hazard Mater; 2022 Oct; 439():129670. PubMed ID: 35908403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-activation of O
    Sun M; Fang LM; Liu JQ; Zhang F; Zhai LF
    Chemosphere; 2019 Nov; 234():269-276. PubMed ID: 31220660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimetal heterointerfaces towards enhanced electro-activation of O
    Sun M; Hu XT; Liu HH; Yang BJ; Wang C; Zhai LF; Wang S
    J Hazard Mater; 2022 Feb; 424(Pt A):127271. PubMed ID: 34564044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifunctional Ni@NiO catalyst supported on loofah sponge-derived carbon for electrocatalytic air oxidation of biorefractory pollutant in a coupling system.
    Sun M; Tao XF; Tang SN; Yu J; Wang Y; Zhai LF
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17585-17596. PubMed ID: 36197609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excellent performance of electro-assisted catalytic wet air oxidation of refractory organic pollutants.
    Sun M; Zhang Y; Kong SY; Zhai LF; Wang S
    Water Res; 2019 Jul; 158():313-321. PubMed ID: 31051376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature air oxidation of organic pollutants via electrocatalysis by nanoscaled Co-CoO on graphite felt anode.
    Sun M; Zhang Y; Liu HH; Zhang F; Zhai LF; Wang S
    Environ Int; 2019 Oct; 131():104977. PubMed ID: 31295645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous Electro-Fenton catalysis with HKUST-1-derived Cu@C decorated in 3D graphene network.
    Yang Y; Liu Y; Fang X; Miao W; Chen X; Sun J; Ni BJ; Mao S
    Chemosphere; 2020 Mar; 243():125423. PubMed ID: 31995878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese-doped molybdenum oxide boosts catalytic performance of electrocatalytic wet air oxidation at ambient temperature.
    Zhai LF; Chen ZX; Qi JX; Sun M
    J Hazard Mater; 2022 Apr; 428():128245. PubMed ID: 35051773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphitic Carbon with MnO/Mn
    Lam DV; Nguyen UNT; Roh E; Choi W; Kim JH; Kim H; Lee SM
    Small; 2021 Jul; 17(29):e2100670. PubMed ID: 34145746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Fenton-like catalysis for pollutants removal via MOF-derived Co
    Qu W; Wen H; Qu X; Guo Y; Hu L; Liu W; Tian S; He C; Shu D
    Chemosphere; 2022 Sep; 303(Pt 3):135301. PubMed ID: 35691400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products.
    Azhar MR; Vijay P; Tadé MO; Sun H; Wang S
    Chemosphere; 2018 Apr; 196():105-114. PubMed ID: 29294423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of multi-walled carbon nanotubes and carbon black co-modified graphite felt cathode for amoxicillin removal by electrochemical advanced oxidation processes under mild pH condition.
    Pan G; Sun X; Sun Z
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8231-8247. PubMed ID: 31900780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption-enhanced catalytic oxidation for long-lasting dynamic degradation of organic dyes by porous manganese-based biopolymeric catalyst.
    Zheng JY; He J; Han CB; Huang G; Sun BC; Zhao WK; Wang Y; Sun L; Si J; Yan H
    Int J Biol Macromol; 2023 May; 237():124152. PubMed ID: 36966855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene.
    Wang F; Dai H; Deng J; Bai G; Ji K; Liu Y
    Environ Sci Technol; 2012 Apr; 46(7):4034-41. PubMed ID: 22413904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic characteristics of MnO2 nanostructures for the O2 reduction process.
    Kalubarme RS; Cho MS; Yun KS; Kim TS; Park CJ
    Nanotechnology; 2011 Sep; 22(39):395402. PubMed ID: 21896976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zr-Based Metal-Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H
    Zheng HQ; Zeng YN; Chen J; Lin RG; Zhuang WE; Cao R; Lin ZJ
    Inorg Chem; 2019 May; 58(10):6983-6992. PubMed ID: 31041865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-dispersed Ni or MnO nanoparticles on mesoporous carbons: preparation via carbonization of bimetallic MOF-74s for highly reactive redox catalysts.
    Bhadra BN; Jhung SH
    Nanoscale; 2018 Aug; 10(31):15035-15047. PubMed ID: 30052243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous intra-electron transfer within rGO@Fe
    Sharif HMA; Asif MB; Wang Y; Hou YN; Yang B; Xiao X; Li C
    J Hazard Mater; 2023 Jan; 441():129951. PubMed ID: 36115094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile preparation of nanocellulose/Zn-MOF-based catalytic filter for water purification by oxidation process.
    Zhu W; Han M; Kim D; Zhang Y; Kwon G; You J; Jia C; Kim J
    Environ Res; 2022 Apr; 205():112417. PubMed ID: 34856164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of H
    Dong Z; Zhang Y; Yao J
    Chemosphere; 2022 May; 295():133896. PubMed ID: 35134398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.