BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35908707)

  • 1. Docosahexaenoic acid production of the marine microalga Isochrysis galbana cultivated on renewable substrates from food processing waste under CO
    Zheng H; Ge F; Song K; Yang Z; Li J; Yan F; Wu X; Zhang Q; Liu Y; Ruan R
    Sci Total Environ; 2022 Nov; 848():157654. PubMed ID: 35908707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production.
    Liu J; Sommerfeld M; Hu Q
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4785-98. PubMed ID: 23423326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative method to grow the probiotic Lactobacillus reuteri in the omega3-rich microalga Isochrysis galbana.
    Colantoni E; Palone F; Cesi V; Leter B; Sugoni G; Laudadio I; Negroni A; Vitali R; Stronati L
    Sci Rep; 2022 Feb; 12(1):3127. PubMed ID: 35210548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omega-3-rich Isochrysis sp. biomass enhances brain docosahexaenoic acid levels and improves serum lipid profile and antioxidant status in Wistar rats.
    Balakrishnan J; Dhavamani S; Sadasivam SG; Arumugam M; Vellaikumar S; Ramalingam J; Shanmugam K
    J Sci Food Agric; 2019 Oct; 99(13):6066-6075. PubMed ID: 31228262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced Extraction of Lipids with DHA from
    Señoráns M; Castejón N; Señoráns FJ
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of CO2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana.
    Picardo MC; de Medeiros JL; Araújo Ode Q; Chaloub RM
    Bioresour Technol; 2013 Sep; 143():242-50. PubMed ID: 23800629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lowering the culture medium temperature improves the omega-3 fatty acid production in marine microalga
    Balakrishnan J; Shanmugam K
    Prep Biochem Biotechnol; 2021; 51(5):511-518. PubMed ID: 33078672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and Biochemical Changes Reveal Differential Patterns of Docosahexaenoic Acid Partitioning in Two Marine Algal Strains of Isochrysis.
    Sun Z; Chen Y; Mao X; Liu J
    Mar Drugs; 2017 Nov; 15(11):. PubMed ID: 29137149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methane production from marine microalgae Isochrysis galbana.
    Santos NO; Oliveira SM; Alves LC; Cammarota MC
    Bioresour Technol; 2014 Apr; 157():60-7. PubMed ID: 24531148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus.
    Hu H; Li JY; Pan XR; Zhang F; Ma LL; Wang HJ; Zeng RJ
    Sci Total Environ; 2019 Mar; 656():140-149. PubMed ID: 30504016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel C22-∆4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from Isochrysis galbana and its expression in Saccharomyces cerevisiae.
    Shi T; Yu A; Li M; Ou X; Xing L; Li M
    Biotechnol Lett; 2012 Dec; 34(12):2265-74. PubMed ID: 22941368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Docosahexaenoic acid ethyl esters from Isochrysis galbana.
    Poisson L; Ergan F
    J Biotechnol; 2001 Sep; 91(1):75-81. PubMed ID: 11522364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron and methyl jasmonate increase high-value PUFA production by elevating the expression of desaturase genes in marine microalga Isochrysis sp.
    Ayothi P; Muthu A; Shanmugam K
    J Appl Microbiol; 2022 Mar; 132(3):2042-2053. PubMed ID: 34741377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of Sodium-Acetate-Induced DHA Accumulation in a DHA-Producing Microalga,
    Li Y; Tian W; Fu Z; Ye W; Zhang X; Zhang Z; Sun D
    Mar Drugs; 2022 Aug; 20(8):. PubMed ID: 36005511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions.
    Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW
    J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101.
    Ryu BG; Kim K; Kim J; Han JI; Yang JW
    Bioresour Technol; 2013 Feb; 129():351-9. PubMed ID: 23262011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation of Isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions.
    Alkhamis Y; Qin JG
    Biomed Res Int; 2013; 2013():983465. PubMed ID: 24386642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of carbohydrates as the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta) and optimization of its productivity by nitrogen manipulation.
    Wang HT; Yao CH; Ai JN; Cao XP; Xue S; Wang WL
    Bioresour Technol; 2014 Nov; 171():298-304. PubMed ID: 25216035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of marine phycotoxin dinophysistoxin-1 on the growth and cell cycle of Isochrysis galbana.
    Han L; Qiu J; Li A; Li D; Yang Y; Wang G; Li P
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Nov; 273():109732. PubMed ID: 37611885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yogurt Enriched with
    Matos J; Afonso C; Cardoso C; Serralheiro ML; Bandarra NM
    Foods; 2021 Jun; 10(7):. PubMed ID: 34202539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.