These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35909101)

  • 21. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.
    Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M
    Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: a field study.
    Nadgórska-Socha A; Ptasiński B; Kita A
    Ecotoxicology; 2013 Nov; 22(9):1422-34. PubMed ID: 24085602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching.
    Shrestha P; Bellitürk K; Görres JH
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inoculation of heavy metal resistant bacteria alleviated heavy metal-induced oxidative stress biomarkers in spinach (Spinacia oleracea L.).
    Jamil M; Malook I; Rehman SU; Aslam MM; Fayyaz M; Shah G; Kaplan A; Khan MN; Ali B; Roy R; Ercisli S; Harakeh S; Moulay M; Javed MA; Abeed AHA
    BMC Plant Biol; 2024 Mar; 24(1):221. PubMed ID: 38539080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response.
    Tauqeer HM; Ali S; Rizwan M; Ali Q; Saeed R; Iftikhar U; Ahmad R; Farid M; Abbasi GH
    Ecotoxicol Environ Saf; 2016 Apr; 126():138-146. PubMed ID: 26748375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental microplastic interact with heavy metal in polluted soil from mine site in the North of Tunisia: Effects on heavy metal accumulation, growth, photosynthetic activities, and biochemical responses of alfalfa plants (Medicago saliva L.).
    Chebbi L; Boughattas I; Helaoui S; Mkhinini M; Jabnouni H; Ben Fadhl E; Alphonse V; Livet A; Giusti-Miller S; Banni M; Bousserrhine N
    Chemosphere; 2024 Aug; 362():142521. PubMed ID: 38857630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Heavy Metal Stress on Physiology, Hydraulics, and Anatomy of Three Desert Plants in the Jinchang Mining Area, China.
    Gao T; Wang H; Li C; Zuo M; Wang X; Liu Y; Yang Y; Xu D; Liu Y; Fang X
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
    Rascio N; Navari-Izzo F
    Plant Sci; 2011 Feb; 180(2):169-81. PubMed ID: 21421358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antioxidative enzymes and expression of rbcL gene as tools to monitor heavy metal-related stress in plants.
    Jaskulak M; Rorat A; Grobelak A; Kacprzak M
    J Environ Manage; 2018 Jul; 218():71-78. PubMed ID: 29665488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamic acid assisted phyto-management of silver-contaminated soils through sunflower; physiological and biochemical response.
    Farid M; Ali S; Zubair M; Saeed R; Rizwan M; Sallah-Ud-Din R; Azam A; Ashraf R; Ashraf W
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25390-25400. PubMed ID: 29951756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.
    Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H
    Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heavy metals-resistant bacteria (HM-RB): Potential bioremediators of heavy metals-stressed Spinacia oleracea plant.
    Desoky EM; Merwad AM; Semida WM; Ibrahim SA; El-Saadony MT; Rady MM
    Ecotoxicol Environ Saf; 2020 Jul; 198():110685. PubMed ID: 32387845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil.
    Saleem MH; Fahad S; Khan SU; Ahmar S; Ullah Khan MH; Rehman M; Maqbool Z; Liu L
    Ecotoxicol Environ Saf; 2020 Feb; 189():109915. PubMed ID: 31722799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants--implications for phytoremediation.
    Anjum NA; Umar S; Iqbal M
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10286-93. PubMed ID: 24756685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screening of various Brassica species for phytoremediation of heavy metals-contaminated soil of Lakki Marwat, Pakistan.
    Ali I; Khan MJ; Shah A; Deeba F; Hussain H; Yazdan F; Khan MU; Khan MD
    Environ Sci Pollut Res Int; 2022 May; 29(25):37765-37776. PubMed ID: 35075562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The potential of phytoremediation using hyperaccumulator plants: a case study at a lead-zinc mine site.
    Lorestani B; Cheraghi M; Yousefi N
    Int J Phytoremediation; 2012 Sep; 14(8):786-95. PubMed ID: 22908644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.