These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35909273)
21. In vitro modulation of tumor progression-associated properties of hormone refractory prostate carcinoma cell lines by cytokines. Sokoloff MH; Tso CL; Kaboo R; Taneja S; Pang S; deKernion JB; Belldegrun AS Cancer; 1996 May; 77(9):1862-72. PubMed ID: 8646686 [TBL] [Abstract][Full Text] [Related]
22. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma. Podar K; Jager D Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977 [TBL] [Abstract][Full Text] [Related]
24. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549 [TBL] [Abstract][Full Text] [Related]
25. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Xu Y; Chen C; Guo Y; Hu S; Sun Z Front Immunol; 2022; 13():848327. PubMed ID: 35300341 [TBL] [Abstract][Full Text] [Related]
26. Inhibition of integrin αvβ6 sparks T-cell antitumor response and enhances immune checkpoint blockade therapy in colorectal cancer. Busenhart P; Montalban-Arques A; Katkeviciute E; Morsy Y; Van Passen C; Hering L; Atrott K; Lang S; Garzon JFG; Naschberger E; Hartmann A; Rogler G; Stürzl M; Spalinger MR; Scharl M J Immunother Cancer; 2022 Feb; 10(2):. PubMed ID: 35131862 [TBL] [Abstract][Full Text] [Related]
27. Combined delivery of a TGF-β inhibitor and an adenoviral vector expressing interleukin-12 potentiates cancer immunotherapy. Jiang J; Zhang Y; Peng K; Wang Q; Hong X; Li H; Fan G; Zhang Z; Gong T; Sun X Acta Biomater; 2017 Oct; 61():114-123. PubMed ID: 28483693 [TBL] [Abstract][Full Text] [Related]
28. Applications and advances of CRISPR-Cas9 in cancer immunotherapy. Xia AL; He QF; Wang JC; Zhu J; Sha YQ; Sun B; Lu XJ J Med Genet; 2019 Jan; 56(1):4-9. PubMed ID: 29970486 [TBL] [Abstract][Full Text] [Related]
29. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189 [TBL] [Abstract][Full Text] [Related]
30. The role of tumour necrosis factor-alpha in combination with interferon-gamma or interleukin-1 in the induction of immunosuppressive macrophages because of Mycobacterium avium complex infection. Tomioka H; Maw WW; Sato K; Saito H Immunology; 1996 May; 88(1):61-7. PubMed ID: 8707352 [TBL] [Abstract][Full Text] [Related]
31. Interleukin-2 and interleukin-15: immunotherapy for cancer. Fehniger TA; Cooper MA; Caligiuri MA Cytokine Growth Factor Rev; 2002 Apr; 13(2):169-83. PubMed ID: 11900992 [TBL] [Abstract][Full Text] [Related]
32. Cancer immunotherapy via targeted TGF-β signalling blockade in T Li S; Liu M; Do MH; Chou C; Stamatiades EG; Nixon BG; Shi W; Zhang X; Li P; Gao S; Capistrano KJ; Xu H; Cheung NV; Li MO Nature; 2020 Nov; 587(7832):121-125. PubMed ID: 33087933 [TBL] [Abstract][Full Text] [Related]
33. Tipping the scales: Immunotherapeutic strategies that disrupt immunosuppression and promote immune activation. Santiago-Sánchez GS; Hodge JW; Fabian KP Front Immunol; 2022; 13():993624. PubMed ID: 36159809 [TBL] [Abstract][Full Text] [Related]
35. Prostate Cancer Immunotherapy-Finally in From the Cold? Runcie KD; Dallos MC Curr Oncol Rep; 2021 Jun; 23(8):88. PubMed ID: 34125308 [TBL] [Abstract][Full Text] [Related]
36. Engineered cells for costimulatory enhancement combined with IL-21 enhance the generation of PD-1-disrupted CTLs for adoptive immunotherapy. Shao J; Xu Q; Su S; Meng F; Zou Z; Chen F; Du J; Qian X; Liu B Cell Immunol; 2017 Oct; 320():38-45. PubMed ID: 28935250 [TBL] [Abstract][Full Text] [Related]
37. Immune checkpoint blockade combined with IL-6 and TGF-β inhibition improves the therapeutic outcome of mRNA-based immunotherapy. Bialkowski L; Van der Jeught K; Bevers S; Tjok Joe P; Renmans D; Heirman C; Aerts JL; Thielemans K Int J Cancer; 2018 Aug; 143(3):686-698. PubMed ID: 29464699 [TBL] [Abstract][Full Text] [Related]
38. The Emergence of Immune-checkpoint Inhibitors in Colorectal Cancer Therapy. Ghidini M; Fusco N; Salati M; Khakoo S; Tomasello G; Petrelli F; Trapani D; Petrillo A Curr Drug Targets; 2021; 22(9):1021-1033. PubMed ID: 33563194 [TBL] [Abstract][Full Text] [Related]
39. Potential predictive value of change in inflammatory cytokines levels subsequent to initiation of immune checkpoint inhibitor in patients with advanced non-small cell lung cancer. Lim JU; Yoon HK Cytokine; 2021 Feb; 138():155363. PubMed ID: 33264749 [TBL] [Abstract][Full Text] [Related]
40. Combined Stimulation with Interleukin-18 and Interleukin-12 Potently Induces Interleukin-8 Production by Natural Killer Cells. Poznanski SM; Lee AJ; Nham T; Lusty E; Larché MJ; Lee DA; Ashkar AA J Innate Immun; 2017; 9(5):511-525. PubMed ID: 28633138 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]