BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35909285)

  • 1. Machine Learning-based Virtual Screening for STAT3 Anticancer Drug Target.
    Wadood A; Ajmal A; Junaid M; Rehman AU; Uddin R; Azam SS; Khan AZ; Ali A
    Curr Pharm Des; 2022; 28(36):3023-3032. PubMed ID: 35909285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-based drug design for identification of thymidylate kinase inhibitors as a potential anti-Mycobacterium tuberculosis.
    Shahab M; Danial M; Duan X; Khan T; Liang C; Gao H; Chen M; Wang D; Zheng G
    J Biomol Struct Dyn; 2024 May; 42(8):3874-3886. PubMed ID: 37232453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning-Based Virtual Screening and Molecular Simulation Approaches Identified Novel Potential Inhibitors for Cancer Therapy.
    Shahab M; Zheng G; Khan A; Wei D; Novikov AS
    Biomedicines; 2023 Aug; 11(8):. PubMed ID: 37626747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective virtual screening combined with bio-molecular simulation enabled identification of new inhibitors for the KRAS drug target.
    Ajmal A; Alkhatabi HA; Alreemi RM; Alamri MA; Khalid A; Abdalla AN; Alotaibi BS; Wadood A
    BMC Chem; 2024 Mar; 18(1):57. PubMed ID: 38528576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Drug Targets and Their Inhibitors in
    Ali H; Samad A; Ajmal A; Ali A; Ali I; Danial M; Kamal M; Ullah M; Ullah R; Kalim M
    Pharmaceuticals (Basel); 2023 Aug; 16(8):. PubMed ID: 37631039
    [No Abstract]   [Full Text] [Related]  

  • 6. Identification of STAT1 and STAT3 specific inhibitors using comparative virtual screening and docking validation.
    Szelag M; Czerwoniec A; Wesoly J; Bluyssen HA
    PLoS One; 2015; 10(2):e0116688. PubMed ID: 25710482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical probes that competitively and selectively inhibit Stat3 activation.
    Xu X; Kasembeli MM; Jiang X; Tweardy BJ; Tweardy DJ
    PLoS One; 2009; 4(3):e4783. PubMed ID: 19274102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a natural product-like STAT3 dimerization inhibitor by structure-based virtual screening.
    Liu LJ; Leung KH; Chan DS; Wang YT; Ma DL; Leung CH
    Cell Death Dis; 2014 Jun; 5(6):e1293. PubMed ID: 24922077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using machine learning to improve ensemble docking for drug discovery.
    Chandak T; Mayginnes JP; Mayes H; Wong CF
    Proteins; 2020 Oct; 88(10):1263-1270. PubMed ID: 32401384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning and molecular simulation-based protocols to identify novel potential inhibitors for reverse transcriptase against HIV infections.
    Shahab M; Zheng G; Bin Jardan YA; Bourhia M
    J Biomol Struct Dyn; 2024 Feb; ():1-14. PubMed ID: 38379294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of inhibitors for Agr quorum sensing system of Staphylococcus aureus by machine learning, pharmacophore modeling, and molecular dynamics approaches.
    Ramasamy M; Vetrivel A; Venugopal S; Murugesan R
    J Mol Model; 2023 Jul; 29(8):258. PubMed ID: 37468720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer-aided drug design approach to discover tumour suppressor p53 protein activators for colorectal cancer therapy.
    PatrĂ­cio RPS; Videira PA; Pereira F
    Bioorg Med Chem; 2022 Jan; 53():116530. PubMed ID: 34861473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer.
    Slattery ML; Lundgreen A; Kadlubar SA; Bondurant KL; Wolff RK
    Mol Carcinog; 2013 Feb; 52(2):155-66. PubMed ID: 22121102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents.
    Wani MA; Roy KK
    Mol Divers; 2022 Jun; 26(3):1345-1356. PubMed ID: 34110578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined drug discovery strategy based on machine learning and molecular docking.
    Zhang Y; Wang Y; Zhou W; Fan Y; Zhao J; Zhu L; Lu S; Lu T; Chen Y; Liu H
    Chem Biol Drug Des; 2019 May; 93(5):685-699. PubMed ID: 30688405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hybrid Docking and Machine Learning Approach to Enhance the Performance of Virtual Screening Carried out on Protein-Protein Interfaces.
    Singh N; Villoutreix BO
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SD-1029 inhibits signal transducer and activator of transcription 3 nuclear translocation.
    Duan Z; Bradner JE; Greenberg E; Levine R; Foster R; Mahoney J; Seiden MV
    Clin Cancer Res; 2006 Nov; 12(22):6844-52. PubMed ID: 17121906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7: A Novel Target for the Treatment of Cancer.
    Aziz M; Ejaz SA; Zargar S; Akhtar N; Aborode AT; A Wani T; Batiha GE; Siddique F; Alqarni M; Akintola AA
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Models Combined with Virtual Screening and Molecular Docking to Predict Human Topoisomerase I Inhibitors.
    Li B; Kang X; Zhao D; Zou Y; Huang X; Wang J; Zhang C
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.