These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35909646)

  • 1. The enhancement of DNA fragmentation in a bench top ultrasonic water bath with needle-induced air bubbles: Simulation and experimental investigation.
    Sun L; Liu Y; Lehnert T; Gijs MAM; Li S
    Biomicrofluidics; 2022 Jul; 16(4):044103. PubMed ID: 35909646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble-enhanced ultrasonic microfluidic chip for rapid DNA fragmentation.
    Sun L; Lehnert T; Li S; Gijs MAM
    Lab Chip; 2022 Feb; 22(3):560-572. PubMed ID: 34989733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath.
    Kasoji SK; Pattenden SG; Malc EP; Jayakody CN; Tsuruta JK; Mieczkowski PA; Janzen WP; Dayton PA
    PLoS One; 2015; 10(7):e0133014. PubMed ID: 26186461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydimethylsiloxane microstructure-induced acoustic streaming for enhanced ultrasonic DNA fragmentation on a microfluidic chip.
    Sun L; Lehnert T; Gijs MAM; Li S
    Lab Chip; 2022 Oct; 22(21):4224-4237. PubMed ID: 36178361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation.
    Su H; Sun J; Wang C; Wang H
    Ultrason Sonochem; 2024 Jan; 102():106734. PubMed ID: 38128391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inexpensive, simple and effective method of genome DNA fragmentation for NGS libraries.
    Kechin A; Boldyreva D; Borobova V; Boyarskikh U; Scherbak S; Apalko S; Makarova M; Mosyakin N; Kaftyreva L; Filipenko M
    J Biochem; 2021 Dec; 170(5):675-681. PubMed ID: 34382083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the influence of ultrasound on the kinetic behaviour of hydrogen bubbles produced by proton exchange membrane electrolysis with water.
    Su H; Sun J; Wang C; Wang H
    Ultrason Sonochem; 2024 Aug; 108():106968. PubMed ID: 38941702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragmentation of cavitation bubble in ultrasound field under small pressure amplitude.
    Yamamoto T; Hatanaka SI; Komarov SV
    Ultrason Sonochem; 2019 Nov; 58():104684. PubMed ID: 31450353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance ultrasonic measurements of microscopic gas bubbles.
    Horton JW; Wells CH
    Aviat Space Environ Med; 1976 Jul; 47(7):777-81. PubMed ID: 971166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The acoustic excitation of air bubbles fragmenting in sheared flow.
    Deane GB; Stokes MD
    J Acoust Soc Am; 2008 Dec; 124(6):3450-63. PubMed ID: 19206774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of contrast agent destruction.
    Chomas JE; Dayton P; Allen J; Morgan K; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):232-48. PubMed ID: 11367791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic bubbles in medicine: influence of the shell.
    Postema M; Schmitz G
    Ultrason Sonochem; 2007 Apr; 14(4):438-44. PubMed ID: 17218145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillating bubble concentration and its size distribution using acoustic emission spectra.
    Avvaru B; Pandit AB
    Ultrason Sonochem; 2009 Jan; 16(1):105-15. PubMed ID: 18752981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for predicting the number of active bubbles in sonochemical reactors.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Continuous Flow DNA Fragmentation based on a Vibrating Sharp-tip.
    Li X; Wang J; Curtin K; Li P
    Microfluid Nanofluidics; 2022 Dec; 26(12):. PubMed ID: 38130602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of ultrasonic disintegration of sewage sludge by aeration.
    Zhao H; Zhang P; Zhang G; Cheng R
    J Environ Sci (China); 2016 Apr; 42():163-167. PubMed ID: 27090707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.