These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35909804)

  • 61. The Recent Progress of Oxygen Reduction Electrocatalysts Used at Fuel Cell Level.
    Li JR; Liu MX; Liu X; Yu XH; Li QZ; Sun Q; Sun T; Cao S; Hou CC
    Small Methods; 2024 Mar; 8(3):e2301249. PubMed ID: 38012517
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.
    Lim J; Shin H; Kim M; Lee H; Lee KS; Kwon Y; Song D; Oh S; Kim H; Cho E
    Nano Lett; 2018 Apr; 18(4):2450-2458. PubMed ID: 29578723
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Gradient-Concentration Design of Stable Core-Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis.
    Lyu X; Jia Y; Mao X; Li D; Li G; Zhuang L; Wang X; Yang D; Wang Q; Du A; Yao X
    Adv Mater; 2020 Aug; 32(32):e2003493. PubMed ID: 32596981
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhancement of Electrocatalytic Oxygen Reduction Activity and Durability of Pt-Ni Rhombic Dodecahedral Nanoframes by Anchoring to Nitrogen-Doped Carbon Support.
    Kato M; Ogura K; Nakagawa S; Tokuda S; Takahashi K; Nakamura T; Yagi I
    ACS Omega; 2018 Aug; 3(8):9052-9059. PubMed ID: 31459039
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Understanding of Correlation between Electronic Properties and Sulfur Tolerance of Pt-Based Catalysts for Hydrogen Oxidation.
    Ke S; Qiu L; Zhao W; Sun C; Cui B; Xu G; Dou M
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7768-7778. PubMed ID: 35104117
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design and Impact: Navigating the Electrochemical Characterization Methods for Supported Catalysts.
    Kasuk KA; Nerut J; Grozovski V; Lust E; Kucernak A
    ACS Catal; 2024 Aug; 14(16):11949-11966. PubMed ID: 39169910
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hollow PtFe Alloy Nanoparticles Derived from Pt-Fe
    Yang Z; Shang L; Xiong X; Shi R; Waterhouse GIN; Zhang T
    Chemistry; 2020 Mar; 26(18):4090-4096. PubMed ID: 31782577
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra.
    Zhang J; Yang H; Fang J; Zou S
    Nano Lett; 2010 Feb; 10(2):638-44. PubMed ID: 20078068
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Towards the Reduction of Pt Loading in High Temperature Proton Exchange Membrane Fuel Cells - Effect of Fe-N-C in Pt-Alloy Cathodes.
    Müller-Hülstede J; Uhlig LM; Schmies H; Schonvogel D; Meyer Q; Nie Y; Zhao C; Vidakovic J; Wagner P
    ChemSusChem; 2023 Mar; 16(5):e202202046. PubMed ID: 36484108
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthesis of PtM (M=Co, Ni)/Reduced Graphene Oxide Nanocomposites as Electrocatalysts for the Oxygen Reduction Reaction.
    Li J; Fu X; Mao Z; Yang Y; Qiu T; Wu Q
    Nanoscale Res Lett; 2016 Dec; 11(1):3. PubMed ID: 26732276
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Uniform Pt nanoparticles supported on urchin-like mesoporous TiO
    He S; Wu C; Sun Z; Liu Y; Hu R; Guan L; Zhan H
    Nanoscale; 2020 May; 12(19):10656-10663. PubMed ID: 32374301
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells.
    Su L; Jia W; Li CM; Lei Y
    ChemSusChem; 2014 Feb; 7(2):361-78. PubMed ID: 24449484
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Highly efficient and durable TiN nanofiber electrocatalyst supports.
    Kim H; Cho MK; Kwon JA; Jeong YH; Lee KJ; Kim NY; Kim MJ; Yoo SJ; Jang JH; Kim HJ; Nam SW; Lim DH; Cho E; Lee KY; Kim JY
    Nanoscale; 2015 Nov; 7(44):18429-34. PubMed ID: 26489450
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Strained Pt(221) Facet in a PtCo@Pt-Rich Catalyst Boosts Oxygen Reduction and Hydrogen Evolution Activity.
    Tetteh EB; Gyan-Barimah C; Lee HY; Kang TH; Kang S; Ringe S; Yu JS
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25246-25256. PubMed ID: 35609281
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Design principles for the synthesis of platinum-cobalt intermetallic nanoparticles for electrocatalytic applications.
    Yu S; Yang H
    Chem Commun (Camb); 2023 Apr; 59(33):4852-4871. PubMed ID: 37000696
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metallofullerenes as fuel cell electrocatalysts: a theoretical investigation of adsorbates on C59Pt.
    Gabriel MA; Genovese L; Krosnicki G; Lemaire O; Deutsch T; Franco AA
    Phys Chem Chem Phys; 2010 Aug; 12(32):9406-12. PubMed ID: 20617230
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of Catalyst Processing on the Activity and Stability of Pt-Ni Nanoframe Electrocatalysts.
    Chen S; Niu Z; Xie C; Gao M; Lai M; Li M; Yang P
    ACS Nano; 2018 Aug; 12(8):8697-8705. PubMed ID: 30028589
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Investigation of multiple commercial electrocatalysts and electrocatalyst degradation for fuel cells in real vehicles.
    He W; Xiang Y; Xin M; Qiu L; Dong W; Zhao W; Diao Y; Zheng A; Xu G
    RSC Adv; 2022 Nov; 12(50):32374-32382. PubMed ID: 36425676
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.
    Pullamsetty A; Sundara R
    J Colloid Interface Sci; 2016 Oct; 479():260-270. PubMed ID: 27393888
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Toward pH Independent Oxygen Reduction Reaction by Polydopamine Derived 3D Interconnected, Iron Carbide Embedded Graphitic Carbon.
    Gangadharan PK; Pandikassala A; Kurungot S
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8147-8158. PubMed ID: 33583179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.