These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35910129)
1. Rapid Vanadium Extraction from Roasted Vanadium Steel Slag via a H Liu S; Chen Y; Yu S; Zhang D; Xie G ACS Omega; 2022 Jul; 7(29):25580-25589. PubMed ID: 35910129 [TBL] [Abstract][Full Text] [Related]
2. Leaching Kinetics of Vanadium from Calcium-Roasting High-Chromium Vanadium Slag Enhanced by Electric Field. Peng H; Guo J; Zhang X ACS Omega; 2020 Jul; 5(28):17664-17671. PubMed ID: 32715252 [TBL] [Abstract][Full Text] [Related]
3. Vanadium extraction from steel slag: Generation, recycling and management. Yang MQ; Yang JY Environ Pollut; 2024 Feb; 343():123126. PubMed ID: 38092336 [TBL] [Abstract][Full Text] [Related]
4. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag. Stewart DI; Bray AW; Udoma G; Hobson AJ; Mayes WM; Rogerson M; Burke IT Environ Sci Pollut Res Int; 2018 Apr; 25(10):9861-9872. PubMed ID: 29372528 [TBL] [Abstract][Full Text] [Related]
5. A clean and efficient route for extraction of vanadium from vanadium slag by electro-oxidation combined with ultrasound cavitation. Liu B; Duan L; Cai S; Ren Q; Li J; Wang Y; Zeng Y Ultrason Sonochem; 2024 Jan; 102():106735. PubMed ID: 38128390 [TBL] [Abstract][Full Text] [Related]
6. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching. Zhang Y; Zhang TA; Dreisinger D; Lv C; Lv G; Zhang W J Hazard Mater; 2019 May; 369():632-641. PubMed ID: 30826556 [TBL] [Abstract][Full Text] [Related]
7. A novel roasting process to extract vanadium and chromium from high chromium vanadium slag using a NaOH-NaNO Teng A; Xue X J Hazard Mater; 2019 Nov; 379():120805. PubMed ID: 31238217 [TBL] [Abstract][Full Text] [Related]
8. Promoting the Calcified Roasting of Vanadium Slag Based on the CeO Xu Z; Tang K; Chen Y; Zhang Q; Du J; Liu Z; Tao C ACS Omega; 2024 Apr; 9(14):16810-16819. PubMed ID: 38617601 [TBL] [Abstract][Full Text] [Related]
9. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite. Chen D; Zhao H; Hu G; Qi T; Yu H; Zhang G; Wang L; Wang W J Hazard Mater; 2015 Aug; 294():35-40. PubMed ID: 25840036 [TBL] [Abstract][Full Text] [Related]
10. Study of Forms of Compounds of Vanadium and Other Elements in Samples of Pyrometallurgical Enrichment of Ash from Burning Oil Combustion at Thermal Power Plants. Volkov A; Kologrieva U; Stulov P Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500092 [TBL] [Abstract][Full Text] [Related]
11. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method. Zhao Z; Guo M; Zhang M J Hazard Mater; 2015 Apr; 286():402-9. PubMed ID: 25603289 [TBL] [Abstract][Full Text] [Related]
12. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816 [TBL] [Abstract][Full Text] [Related]
13. Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. Chaurand P; Rose J; Briois V; Olivi L; Hazemann JL; Proux O; Domas J; Bottero JY J Hazard Mater; 2007 Jan; 139(3):537-42. PubMed ID: 16707215 [TBL] [Abstract][Full Text] [Related]
14. Mineralogical characterisation and magnetic separation of vanadium-bearing converter slag. Xiang J; Huang Q; Lv W; Pei G; Lv X; Liu S Waste Manag Res; 2018 Nov; 36(11):1083-1091. PubMed ID: 30198425 [TBL] [Abstract][Full Text] [Related]
15. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Chen D; Zhao L; Liu Y; Qi T; Wang J; Wang L J Hazard Mater; 2013 Jan; 244-245():588-95. PubMed ID: 23177244 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic and Experimental Studies of Selective Decomposition of Diopside in Ti-Bearing Blast Furnace Slag. Kumai E; Yang F; Xiang L ACS Omega; 2024 Aug; 9(34):36635-36639. PubMed ID: 39220505 [TBL] [Abstract][Full Text] [Related]
17. Recovery and Separation of Vanadium and Chromium by Two-Step Alkaline Leaching Enhanced with an Electric Field and H Peng H; Yang L; Chen Y; Guo J; Li B ACS Omega; 2020 Mar; 5(10):5340-5345. PubMed ID: 32201823 [TBL] [Abstract][Full Text] [Related]
18. Optimizing the Leaching Parameters and Studying the Kinetics of Copper Recovery from Waste Printed Circuit Boards. Hao J; Wang X; Wang Y; Wu Y; Guo F ACS Omega; 2022 Feb; 7(4):3689-3699. PubMed ID: 35128277 [TBL] [Abstract][Full Text] [Related]
19. Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms. Li J; Zhang B; Yang M; Lin H J Hazard Mater; 2021 Aug; 416():125843. PubMed ID: 33865106 [TBL] [Abstract][Full Text] [Related]
20. Effect of roasting process on the V (anti-tumor agent) recovery from the slag of the electric arc furnace (EAF). Akbari M; Daneshmand S; Heydari Vini M; Azimy H Heliyon; 2024 Jun; 10(11):e31986. PubMed ID: 38845914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]