BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35910147)

  • 1. Comprehensive Evaluation and Comparison of Machine Learning Methods in QSAR Modeling of Antioxidant Tripeptides.
    Du Z; Wang D; Li Y
    ACS Omega; 2022 Jul; 7(29):25760-25771. PubMed ID: 35910147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSAR Study on Antioxidant Tripeptides and the Antioxidant Activity of the Designed Tripeptides in Free Radical Systems.
    Chen N; Chen J; Yao B; Li Z
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29890782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning methods for unveiling the potential of antioxidant short peptides in goat milk-derived proteins during in vitro gastrointestinal digestion.
    Du A; Jia W; Zhang R
    J Dairy Sci; 2024 Jun; ():. PubMed ID: 38945266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of the relationship between structure and antioxidant activity of tripeptides.
    Uno S; Kodama D; Yukawa H; Shidara H; Akamatsu M
    J Pept Sci; 2020 Mar; 26(3):e3238. PubMed ID: 31930566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-guided discovery of antioxidant peptides bounded to the Keap1 receptor as hunter for potential dietary antioxidants.
    Yin JY; Han YN; Liu MQ; Piao ZH; Zhang X; Xue YT; Zhang YH
    Food Chem; 2022 Mar; 373(Pt A):130999. PubMed ID: 34710694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Structure-Activity Relationship Study of Antioxidant Tripeptides Based on Model Population Analysis.
    Deng B; Long H; Tang T; Ni X; Chen J; Yang G; Zhang F; Cao R; Cao D; Zeng M; Yi L
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30823542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity relationship study of antioxidative peptides by QSAR modeling: the amino acid next to C-terminus affects the activity.
    Li YW; Li B; He J; Qian P
    J Pept Sci; 2011 Jun; 17(6):454-62. PubMed ID: 21491545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated framework for QSAR model building.
    Kausar S; Falcao AO
    J Cheminform; 2018 Jan; 10(1):1. PubMed ID: 29340790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The index of ideality of correlation improves the predictive potential of models of the antioxidant activity of tripeptides from frog skin (Litoria rubella).
    Toropova AP; Toropov AA; Roncaglioni A; Benfenati E
    Comput Biol Med; 2021 Jun; 133():104370. PubMed ID: 33838612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of structure-antioxidant activity relationship of peptides in free radical systems using QSAR models: key sequence positions and their amino acid properties.
    Li YW; Li B
    J Theor Biol; 2013 Feb; 318():29-43. PubMed ID: 23127747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of machine learning in 3D-QSAR CoMSIA models for the identification of lipid antioxidant peptides.
    Nha Tran TT; Thuan Tran TD; Thuy Bui TT
    RSC Adv; 2023 Nov; 13(48):33707-33720. PubMed ID: 38020021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Comparison and Comprehensive Evaluation of 80 Amino Acid Descriptors in Peptide QSAR Modeling.
    Zhou P; Liu Q; Wu T; Miao Q; Shang S; Wang H; Chen Z; Wang S; Wang H
    J Chem Inf Model; 2021 Apr; 61(4):1718-1731. PubMed ID: 33710894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a QSAR model for binding of tripeptides and tripeptidomimetics to the human intestinal di-/tripeptide transporter hPEPT1.
    Andersen R; Jørgensen FS; Olsen L; Våbenø J; Thorn K; Nielsen CU; Steffansen B
    Pharm Res; 2006 Mar; 23(3):483-92. PubMed ID: 16489544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I-converting enzyme inhibitory activity.
    Vukic VR; Vukic DV; Milanovic SD; Ilicic MD; Kanuric KG; Johnson MS
    Nutr Res; 2017 Oct; 46():22-30. PubMed ID: 29173648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual screening and rational design of antioxidant peptides based on tryptophyllin L structures isolated from the Litoria rubella frog.
    Tran TTN; Tran DP; Nguyen TMA; Tran TH; Phan NNA; Nguyen VC; Nguyen VT; Bowie JH
    J Pept Sci; 2022 Apr; 28(4):e3380. PubMed ID: 34779094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Analysis of QSAR Research Based on Machine Learning Concepts.
    Keyvanpour MR; Shirzad MB
    Curr Drug Discov Technol; 2021; 18(1):17-30. PubMed ID: 32178612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant activities of major tryptophyllin L peptides: A joint investigation of Gaussian-based 3D-QSAR and radical scavenging experiments.
    Tran TTN; Tran DP; Nguyen VC; Tran TDT; Bui TTT; Bowie JH
    J Pept Sci; 2021 Apr; 27(4):e3295. PubMed ID: 33410242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the bioactivities and molecular mechanism of antioxidant peptides by 3D-QSAR, in vitro evaluation and molecular dynamic simulations.
    Yan W; Lin G; Zhang R; Liang Z; Wu W
    Food Funct; 2020 Apr; 11(4):3043-3052. PubMed ID: 32190865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine Learning-Based QSAR Model for Benzimidazole Derivatives as Corrosion Inhibitors by Incorporating Comprehensive Feature Selection.
    Liu Y; Guo Y; Wu W; Xiong Y; Sun C; Yuan L; Li M
    Interdiscip Sci; 2019 Dec; 11(4):738-747. PubMed ID: 31486019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.