These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35910619)
1. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization. Zhang G; Dong Y Front Microbiol; 2022; 13():957444. PubMed ID: 35910619 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Cellulose-Degrading Bacteria Isolated from Silkworm Excrement and Optimization of Its Cellulase Production. Li H; Zhang M; Zhang Y; Xu X; Zhao Y; Jiang X; Zhang R; Gui Z Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896386 [TBL] [Abstract][Full Text] [Related]
3. Construction of cellulose-degrading microbial consortium and evaluation of their ability to degrade spent mushroom substrate. Long J; Wang X; Qiu S; Zhou W; Zhou S; Shen K; Xie L; Ma X; Zhang X Front Microbiol; 2024; 15():1356903. PubMed ID: 38550873 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
5. Screening of cellulose-degrading bacteria and optimization of cellulase production from Bacillus cereus A49 through response surface methodology. Wang J; Bao F; Wei H; Zhang Y Sci Rep; 2024 Apr; 14(1):7755. PubMed ID: 38565929 [TBL] [Abstract][Full Text] [Related]
6. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. Saini A; Aggarwal NK; Yadav A 3 Biotech; 2017 May; 7(1):12. PubMed ID: 28391474 [TBL] [Abstract][Full Text] [Related]
7. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. Santos GB; de Sousa Francisco Filho Á; Rêgo da Silva Rodrigues J; Rodrigues de Souza R J Environ Manage; 2022 Mar; 305():114431. PubMed ID: 34995940 [TBL] [Abstract][Full Text] [Related]
8. Medium supplementation and thorough optimization to induce carboxymethyl cellulase production by Taherzadeh-Ghahfarokhi M; Panahi R; Mokhtarani B Prep Biochem Biotechnol; 2022; 52(4):375-382. PubMed ID: 34319847 [TBL] [Abstract][Full Text] [Related]
9. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951 [TBL] [Abstract][Full Text] [Related]
10. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei. Wang SY; Jiang BL; Zhou X; Chen JH; Li WJ; Liu J; Hu W; Xiao GQ; Dong MY; Wang YC PLoS One; 2015; 10(12):e0144233. PubMed ID: 26656155 [TBL] [Abstract][Full Text] [Related]
11. A novel Trichoderma reesei mutant RP698 with enhanced cellulase production. Silva JCR; Salgado JCS; Vici AC; Ward RJ; Polizeli MLTM; Guimarães LHS; Furriel RPM; Jorge JA Braz J Microbiol; 2020 Jun; 51(2):537-545. PubMed ID: 31667801 [TBL] [Abstract][Full Text] [Related]
12. Enhanced alkaline cellulases production by the thermohalophilic Aspergillus terreus AUMC 10138 mutated by physical and chemical mutagens using corn stover as substrate. Isaac GS; Abu-Tahon MA Braz J Microbiol; 2015; 46(4):1269-77. PubMed ID: 26691490 [TBL] [Abstract][Full Text] [Related]
13. Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. El-Bondkly AM; El-Gendy MM Antonie Van Leeuwenhoek; 2012 Feb; 101(2):331-46. PubMed ID: 21898149 [TBL] [Abstract][Full Text] [Related]
14. Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9. Das A; Paul T; Halder SK; Maity C; Das Mohapatra PK; Pati BR; Mondal KC Pol J Microbiol; 2013; 62(1):31-43. PubMed ID: 23829075 [TBL] [Abstract][Full Text] [Related]
15. The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting. Zang X; Liu M; Fan Y; Xu J; Xu X; Li H Biotechnol Biofuels; 2018; 11():51. PubMed ID: 29492106 [TBL] [Abstract][Full Text] [Related]
16. Potential of indigenous ligno-cellulolytic microbial consortium to accelerate degradation of heterogenous crop residues. Sharma S; Kumawat KC; Kaur S Environ Sci Pollut Res Int; 2022 Dec; 29(58):88331-88346. PubMed ID: 35834084 [TBL] [Abstract][Full Text] [Related]
17. Thermostable Cellulase Biosynthesis from Mostafa YS; Alamri SA; Hashem M; Nafady NA; Abo-Elyousr KAM; Mohamed ZA Open Life Sci; 2020; 15():185-197. PubMed ID: 33987475 [TBL] [Abstract][Full Text] [Related]
18. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Liang YL; Zhang Z; Wu M; Wu Y; Feng JX Biomed Res Int; 2014; 2014():512497. PubMed ID: 25050355 [TBL] [Abstract][Full Text] [Related]
19. Cellulase hyper-production by Li C; Lin F; Zhou L; Qin L; Li B; Zhou Z; Jin M; Chen Z Biotechnol Biofuels; 2017; 10():228. PubMed ID: 29034003 [TBL] [Abstract][Full Text] [Related]
20. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Idris ASO; Pandey A; Rao SS; Sukumaran RK Bioresour Technol; 2017 Oct; 242():265-271. PubMed ID: 28366693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]