These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35910679)

  • 1. Social Learning of a Spatial Task by Observation Alone.
    Doublet T; Nosrati M; Kentros CG
    Front Behav Neurosci; 2022; 16():902675. PubMed ID: 35910679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficit in observational learning in experimental epilepsy.
    Doublet T; Ghestem A; Bernard C
    Epilepsia; 2022 Dec; 63(12):e150-e155. PubMed ID: 36197904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observational learning of a shifting goal location in rats: Impact of distance, observed performance, familiarity, and delay.
    Troha RG; Dong D; Markus EJ
    J Neurosci Methods; 2020 Apr; 335():108617. PubMed ID: 32014445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observational learning in rats: Interplay between demonstrator and observer behavior.
    Troha R; Gowda M; Lee SLT; Markus E
    J Neurosci Methods; 2023 Mar; 388():109807. PubMed ID: 36731637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Connectionist models of social learning: a case of learning by observing a simple task].
    Paignon A; Desrichard O; Bollon T
    Can J Exp Psychol; 2004 Mar; 58(1):46-60. PubMed ID: 15072208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of observing trained conspecifics on the performance and motivation of goldfish, Carassius auratus, in a spatial task.
    Blane JC; Holland RA
    Behav Processes; 2024 Apr; 217():105021. PubMed ID: 38493969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observational learning promotes hippocampal remote awake replay toward future reward locations.
    Mou X; Pokhrel A; Suresh P; Ji D
    Neuron; 2022 Mar; 110(5):891-902.e7. PubMed ID: 34965381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing a trained demonstrator influences associative appetitive learning in rats.
    Agee LA; Ortega ME; Lee HJ; Monfils MH
    R Soc Open Sci; 2023 Apr; 10(4):221224. PubMed ID: 37063993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What to copy: the key factor of observational learning in striped jack (Pseudocaranx dentex) juveniles.
    Takahashi K; Masuda R; Yamashita Y
    Anim Cogn; 2014 Mar; 17(2):495-501. PubMed ID: 24091646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rats with hippocampal lesion show impaired learning and memory in the ziggurat task: a new task to evaluate spatial behavior.
    Faraji J; Lehmann H; Metz GA; Sutherland RJ
    Behav Brain Res; 2008 May; 189(1):17-31. PubMed ID: 18192033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning of efficient behaviour in spatial exploration through observation of behaviour of conspecific in laboratory rats.
    Takano Y; Ukezono M; Nakashima SF; Takahashi N; Hironaka N
    R Soc Open Sci; 2017 Sep; 4(9):170121. PubMed ID: 28989731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Llamas use social information from conspecifics and humans to solve a spatial detour task.
    Pahl A; König von Borstel U; Brucks D
    Anim Cogn; 2023 Sep; 26(5):1623-1633. PubMed ID: 37410341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel paradigm for observational learning in rats.
    Rautio IV; Holmberg EH; Kurup D; Dunn BA; Whitlock JR
    Cogn Neurodyn; 2024 Apr; 18(2):757-767. PubMed ID: 38699625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel, rapidly acquired and persistent spatial memory task that induces immediate early gene expression.
    Feldman LA; Shapiro ML; Nalbantoglu J
    Behav Brain Funct; 2010 Jul; 6():35. PubMed ID: 20594357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Social observation enhances cross-environment activation of hippocampal place cell patterns.
    Mou X; Ji D
    Elife; 2016 Oct; 5():. PubMed ID: 27692067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rat spatial memory tasks adapted for humans: characterization in subjects with intact brain and subjects with selective medial temporal lobe thermal lesions.
    Bohbot VD; Jech R; Růzicka E; Nadel L; Kalina M; Stepánková K; Bures J
    Physiol Res; 2002; 51 Suppl 1():S49-65. PubMed ID: 12479786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus.
    McDonald RJ; Hong NS; Craig LA; Holahan MR; Louis M; Muller RU
    Eur J Neurosci; 2005 Sep; 22(5):1201-13. PubMed ID: 16176363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal lesions impair rapid learning of a continuous spatial alternation task.
    Kim SM; Frank LM
    PLoS One; 2009; 4(5):e5494. PubMed ID: 19424438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory Alone Does Not Account for the Way Rats Learn a Simple Spatial Alternation Task.
    Kastner DB; Gillespie AK; Dayan P; Frank LM
    J Neurosci; 2020 Sep; 40(38):7311-7317. PubMed ID: 32753514
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.