These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 35910769)
1. Genome-wide identification of long non-coding (lncRNA) in Zha W; Li S; Xu H; Chen J; Liu K; Li P; Liu K; Yang G; Chen Z; Shi S; Zhou L; You A PeerJ; 2022; 10():e13587. PubMed ID: 35910769 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive transcriptomic analysis of three varieties with different brown planthopper-resistance identifies leaf sheath lncRNAs in rice. Liu K; Ma X; Zhao L; Lai X; Chen J; Lang X; Han Q; Wan X; Li C BMC Plant Biol; 2023 Jul; 23(1):367. PubMed ID: 37480003 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide identification of long noncoding RNA genes and their potential association with fecundity and virulence in rice brown planthopper, Nilaparvata lugens. Xiao H; Yuan Z; Guo D; Hou B; Yin C; Zhang W; Li F BMC Genomics; 2015 Oct; 16():749. PubMed ID: 26437919 [TBL] [Abstract][Full Text] [Related]
4. Comparative iTRAQ proteomic profiling of proteins associated with the adaptation of brown planthopper to moderately resistant vs. susceptible rice varieties. Zha W; You A PLoS One; 2020; 15(9):e0238549. PubMed ID: 32903256 [TBL] [Abstract][Full Text] [Related]
5. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Kang K; Yue L; Xia X; Liu K; Zhang W Metabolomics; 2019 Apr; 15(4):62. PubMed ID: 30976994 [TBL] [Abstract][Full Text] [Related]
6. Characterization and comparative profiling of the small RNA transcriptomes in the Hemipteran insect Nilaparvata lugens. Zha W; Zhou L; Li S; Liu K; Yang G; Chen Z; Liu K; Xu H; Li P; Hussain S; You A Gene; 2016 Dec; 595(1):83-91. PubMed ID: 27693372 [TBL] [Abstract][Full Text] [Related]
7. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling. Wang Y; Guo H; Li H; Zhang H; Miao X BMC Genomics; 2012 Dec; 13():687. PubMed ID: 23228240 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants. Yang Z; Zhang F; He Q; He G Arch Insect Biochem Physiol; 2005 Jun; 59(2):59-66. PubMed ID: 15898115 [TBL] [Abstract][Full Text] [Related]
9. BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. Lv W; Du B; Shangguan X; Zhao Y; Pan Y; Zhu L; He Y; He G BMC Genomics; 2014 Aug; 15(1):674. PubMed ID: 25109872 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. Ji R; Yu H; Fu Q; Chen H; Ye W; Li S; Lou Y PLoS One; 2013; 8(11):e79612. PubMed ID: 24244529 [TBL] [Abstract][Full Text] [Related]
11. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation. Li C; Luo C; Zhou Z; Wang R; Ling F; Xiao L; Lin Y; Chen H BMC Plant Biol; 2017 Feb; 17(1):57. PubMed ID: 28245796 [TBL] [Abstract][Full Text] [Related]
12. A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper. Tan J; Wu Y; Guo J; Li H; Zhu L; Chen R; He G; Du B BMC Genomics; 2020 Feb; 21(1):144. PubMed ID: 32041548 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome profiling in rice reveals a positive role for OsNCED3 in defense against the brown planthopper, Nilaparvata lugens. Sun L; Li J; Liu Y; Noman A; Chen L; Liu J BMC Genomics; 2022 Sep; 23(1):634. PubMed ID: 36064309 [TBL] [Abstract][Full Text] [Related]
14. Combining next-generation sequencing and single-molecule sequencing to explore brown plant hopper responses to contrasting genotypes of japonica rice. Zhang J; Guan W; Huang C; Hu Y; Chen Y; Guo J; Zhou C; Chen R; Du B; Zhu L; Huanhan D; He G BMC Genomics; 2019 Aug; 20(1):682. PubMed ID: 31464583 [TBL] [Abstract][Full Text] [Related]
15. Silencing of miR156 confers enhanced resistance to brown planthopper in rice. Ge Y; Han J; Zhou G; Xu Y; Ding Y; Shi M; Guo C; Wu G Planta; 2018 Oct; 248(4):813-826. PubMed ID: 29934776 [TBL] [Abstract][Full Text] [Related]
16. Combined miRNA and mRNA sequencing reveals the defensive strategies of resistant YHY15 rice against differentially virulent brown planthoppers. Yu B; Geng M; Xue Y; Yu Q; Lu B; Liu M; Shao Y; Li C; Xu J; Li J; Hu W; Tang H; Li P; Liu Q; Jing S Front Plant Sci; 2024; 15():1366515. PubMed ID: 38562566 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice. Yu H; Ji R; Ye W; Chen H; Lai W; Fu Q; Lou Y PLoS One; 2014; 9(2):e88528. PubMed ID: 24533099 [TBL] [Abstract][Full Text] [Related]
18. Single-Cell RNA sequencing of leaf sheath cells reveals the mechanism of rice resistance to brown planthopper ( Zha W; Li C; Wu Y; Chen J; Li S; Sun M; Wu B; Shi S; Liu K; Xu H; Li P; Liu K; Yang G; Chen Z; Xu D; Zhou L; You A Front Plant Sci; 2023; 14():1200014. PubMed ID: 37404541 [TBL] [Abstract][Full Text] [Related]
19. Differential Responses of Nanda S; Wan PJ; Yuan SY; Lai FX; Wang WX; Fu Q Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30551584 [TBL] [Abstract][Full Text] [Related]
20. Expression Analysis Reveals Differentially Expressed Genes in BPH and WBPH Associated with Resistance in Rice RILs Derived from a Cross between RP2068 and TN1. Anand R; Divya D; Mazumdar-Leighton S; Bentur JS; Nair S Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]