These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 35911980)
1. Identification of cortical interneuron cell markers in mouse embryos based on machine learning analysis of single-cell transcriptomics. Li Z; Wang D; Guo W; Zhang S; Chen L; Zhang YH; Lu L; Pan X; Huang T; Cai YD Front Neurosci; 2022; 16():841145. PubMed ID: 35911980 [TBL] [Abstract][Full Text] [Related]
2. Cxcr4 and Ackr3 regulate allocation of caudal ganglionic eminence-derived interneurons to superficial cortical layers. Venkataramanappa S; Saaber F; Abe P; Schütz D; Kumar PA; Stumm R Cell Rep; 2022 Aug; 40(5):111157. PubMed ID: 35926459 [TBL] [Abstract][Full Text] [Related]
3. Nuclear receptor COUP-TFII-expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons. Cai Y; Zhang Q; Wang C; Zhang Y; Ma T; Zhou X; Tian M; Rubenstein JL; Yang Z J Comp Neurol; 2013 Feb; 521(2):479-97. PubMed ID: 22791192 [TBL] [Abstract][Full Text] [Related]
4. Characterization of spleen and lymph node cell types Li H; Wang D; Zhou X; Ding S; Guo W; Zhang S; Li Z; Huang T; Cai YD Front Mol Neurosci; 2022; 15():1033159. PubMed ID: 36311013 [TBL] [Abstract][Full Text] [Related]
5. Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Inan M; Welagen J; Anderson SA Cereb Cortex; 2012 Apr; 22(4):820-7. PubMed ID: 21693785 [TBL] [Abstract][Full Text] [Related]
6. Evidence That the Laminar Fate of LGE/CGE-Derived Neocortical Interneurons Is Dependent on Their Progenitor Domains. Torigoe M; Yamauchi K; Kimura T; Uemura Y; Murakami F J Neurosci; 2016 Feb; 36(6):2044-56. PubMed ID: 26865626 [TBL] [Abstract][Full Text] [Related]
7. Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms. Chen L; Pan X; Guo W; Gan Z; Zhang YH; Niu Z; Huang T; Cai YD Genomics; 2020 May; 112(3):2524-2534. PubMed ID: 32045671 [TBL] [Abstract][Full Text] [Related]
8. Transcription factors Sp8 and Sp9 regulate the development of caudal ganglionic eminence-derived cortical interneurons. Wei S; Du H; Li Z; Tao G; Xu Z; Song X; Shang Z; Su Z; Chen H; Wen Y; Liu G; You Y; Zhang Z; Yang Z J Comp Neurol; 2019 Dec; 527(17):2860-2874. PubMed ID: 31070778 [TBL] [Abstract][Full Text] [Related]
9. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. Miyoshi G; Young A; Petros T; Karayannis T; McKenzie Chang M; Lavado A; Iwano T; Nakajima M; Taniguchi H; Huang ZJ; Heintz N; Oliver G; Matsuzaki F; Machold RP; Fishell G J Neurosci; 2015 Sep; 35(37):12869-89. PubMed ID: 26377473 [TBL] [Abstract][Full Text] [Related]
10. Hu JS; Malik R; Sohal VS; Rubenstein JL; Vogt D Cells; 2023 Dec; 13(1):. PubMed ID: 38201256 [TBL] [Abstract][Full Text] [Related]
11. Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence. Casalia ML; Li T; Ramsay H; Ross PJ; Paredes MF; Baraban SC J Neurosci; 2021 Apr; 41(14):3105-3119. PubMed ID: 33637558 [TBL] [Abstract][Full Text] [Related]
12. Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain. Touzot A; Ruiz-Reig N; Vitalis T; Studer M Development; 2016 May; 143(10):1753-65. PubMed ID: 27034423 [TBL] [Abstract][Full Text] [Related]
13. Identification of Vulnerable Interneuron Subtypes in 15q13.3 Microdeletion Syndrome Using Single-Cell Transcriptomics. Malwade S; Gasthaus J; Bellardita C; Andelic M; Moric B; Korshunova I; Kiehn O; Vasistha NA; Khodosevich K Biol Psychiatry; 2022 Apr; 91(8):727-739. PubMed ID: 34838304 [TBL] [Abstract][Full Text] [Related]
14. Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. Miyoshi G; Hjerling-Leffler J; Karayannis T; Sousa VH; Butt SJ; Battiste J; Johnson JE; Machold RP; Fishell G J Neurosci; 2010 Feb; 30(5):1582-94. PubMed ID: 20130169 [TBL] [Abstract][Full Text] [Related]
15. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity. Larimer P; Spatazza J; Espinosa JS; Tang Y; Kaneko M; Hasenstaub AR; Stryker MP; Alvarez-Buylla A Cell Rep; 2016 Aug; 16(5):1391-1404. PubMed ID: 27425623 [TBL] [Abstract][Full Text] [Related]
16. A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. Gelman D; Griveau A; Dehorter N; Teissier A; Varela C; Pla R; Pierani A; Marín O J Neurosci; 2011 Nov; 31(46):16570-80. PubMed ID: 22090484 [TBL] [Abstract][Full Text] [Related]
17. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Hansen DV; Lui JH; Flandin P; Yoshikawa K; Rubenstein JL; Alvarez-Buylla A; Kriegstein AR Nat Neurosci; 2013 Nov; 16(11):1576-87. PubMed ID: 24097039 [TBL] [Abstract][Full Text] [Related]
18. Loss of COUP-TFI alters the balance between caudal ganglionic eminence- and medial ganglionic eminence-derived cortical interneurons and results in resistance to epilepsy. Lodato S; Tomassy GS; De Leonibus E; Uzcategui YG; Andolfi G; Armentano M; Touzot A; Gaztelu JM; Arlotta P; Menendez de la Prida L; Studer M J Neurosci; 2011 Mar; 31(12):4650-62. PubMed ID: 21430164 [TBL] [Abstract][Full Text] [Related]
19. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Butt SJ; Fuccillo M; Nery S; Noctor S; Kriegstein A; Corbin JG; Fishell G Neuron; 2005 Nov; 48(4):591-604. PubMed ID: 16301176 [TBL] [Abstract][Full Text] [Related]