These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35912553)
1. [Tyrosine kinases: a target of epigenetic influences and a new direction in the treatment of multiple sclerosis]. Boyko AN Zh Nevrol Psikhiatr Im S S Korsakova; 2022; 122(7. Vyp. 2):27-30. PubMed ID: 35912553 [TBL] [Abstract][Full Text] [Related]
3. A Role for the Non-Receptor Tyrosine Kinase Abl2/Arg in Experimental Neuroinflammation. Jacobsen FA; Scherer AN; Mouritsen J; Bragadóttir H; Thomas Bäckström B; Sardar S; Holmberg D; Koleske AJ; Andersson Å J Neuroimmune Pharmacol; 2018 Jun; 13(2):265-276. PubMed ID: 29550892 [TBL] [Abstract][Full Text] [Related]
4. Epigenetics of multiple sclerosis: an updated review. Küçükali Cİ; Kürtüncü M; Çoban A; Çebi M; Tüzün E Neuromolecular Med; 2015 Jun; 17(2):83-96. PubMed ID: 24652042 [TBL] [Abstract][Full Text] [Related]
5. miR-155-3p Drives the Development of Autoimmune Demyelination by Regulation of Heat Shock Protein 40. Mycko MP; Cichalewska M; Cwiklinska H; Selmaj KW J Neurosci; 2015 Dec; 35(50):16504-15. PubMed ID: 26674874 [TBL] [Abstract][Full Text] [Related]
6. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis . Zeitelhofer M; Adzemovic MZ; Gomez-Cabrero D; Bergman P; Hochmeister S; N'diaye M; Paulson A; Ruhrmann S; Almgren M; Tegnér JN; Ekström TJ; Guerreiro-Cacais AO; Jagodic M Proc Natl Acad Sci U S A; 2017 Feb; 114(9):E1678-E1687. PubMed ID: 28196884 [TBL] [Abstract][Full Text] [Related]
7. Epigenetic Modifications and Therapy in Multiple Sclerosis. Aslani S; Jafari N; Javan MR; Karami J; Ahmadi M; Jafarnejad M Neuromolecular Med; 2017 Mar; 19(1):11-23. PubMed ID: 27382982 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Morquette B; Juźwik CA; Drake SS; Charabati M; Zhang Y; Lécuyer MA; Galloway DA; Dumas A; de Faria Junior O; Paradis-Isler N; Bueno M; Rambaldi I; Zandee S; Moore C; Bar-Or A; Vallières L; Prat A; Fournier AE Brain; 2019 Oct; 142(10):2979-2995. PubMed ID: 31412103 [TBL] [Abstract][Full Text] [Related]
10. Tyrosine kinase inhibitors ameliorate autoimmune encephalomyelitis in a mouse model of multiple sclerosis. Crespo O; Kang SC; Daneman R; Lindstrom TM; Ho PP; Sobel RA; Steinman L; Robinson WH J Clin Immunol; 2011 Dec; 31(6):1010-20. PubMed ID: 21847523 [TBL] [Abstract][Full Text] [Related]
11. Dysregulated Network of miRNAs Involved in the Pathogenesis of Multiple Sclerosis. Dolati S; Marofi F; Babaloo Z; Aghebati-Maleki L; Roshangar L; Ahmadi M; Rikhtegar R; Yousefi M Biomed Pharmacother; 2018 Aug; 104():280-290. PubMed ID: 29775896 [TBL] [Abstract][Full Text] [Related]
12. MicroRNA-181c promotes Th17 cell differentiation and mediates experimental autoimmune encephalomyelitis. Zhang Z; Xue Z; Liu Y; Liu H; Guo X; Li Y; Yang H; Zhang L; Da Y; Yao Z; Zhang R Brain Behav Immun; 2018 May; 70():305-314. PubMed ID: 29545117 [TBL] [Abstract][Full Text] [Related]
13. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle? Ruhrmann S; Stridh P; Kular L; Jagodic M Int J Biochem Cell Biol; 2015 Oct; 67():49-57. PubMed ID: 26002250 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA-7188-5p and miR-7235 regulates Multiple sclerosis in an experimental mouse model. Ibrahim HM; AlZahrani A; Hanieh H; Ahmed EA; Thirugnanasambantham K Mol Immunol; 2021 Nov; 139():157-167. PubMed ID: 34543842 [TBL] [Abstract][Full Text] [Related]
15. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Thamilarasan M; Koczan D; Hecker M; Paap B; Zettl UK Autoimmun Rev; 2012 Jan; 11(3):174-9. PubMed ID: 21621006 [TBL] [Abstract][Full Text] [Related]
16. MicroRNA223 promotes pathogenic T-cell development and autoimmune inflammation in central nervous system in mice. Satoorian T; Li B; Tang X; Xiao J; Xing W; Shi W; Lau KH; Baylink DJ; Qin X Immunology; 2016 Aug; 148(4):326-38. PubMed ID: 27083389 [TBL] [Abstract][Full Text] [Related]
17. The modulatory effects of luteolin on cyclic AMP/Ciliary neurotrophic factor signaling pathway in experimentally induced autoimmune encephalomyelitis. El-Deeb OS; Ghanem HB; El-Esawy RO; Sadek MT IUBMB Life; 2019 Sep; 71(9):1401-1408. PubMed ID: 31185137 [TBL] [Abstract][Full Text] [Related]
18. The MAP kinase inhibitor PD98059 reduces chromosomal instability in the autoimmune encephalomyelitis SJL/J-mouse model of multiple sclerosis. Attia SM; Ahmad SF; Nadeem A; Attia MSM; Ansari MA; Harisa GI; Al-Hamamah MA; Mahmoud MA; Bakheet SA Mutat Res Genet Toxicol Environ Mutagen; 2021; 861-862():503278. PubMed ID: 33551096 [TBL] [Abstract][Full Text] [Related]
19. The miRNA Expression Profile of Experimental Autoimmune Encephalomyelitis Reveals Novel Potential Disease Biomarkers. Venkatesha SH; Dudics S; Song Y; Mahurkar A; Moudgil KD Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544973 [TBL] [Abstract][Full Text] [Related]
20. Parent-of-origin effects implicate epigenetic regulation of experimental autoimmune encephalomyelitis and identify imprinted Dlk1 as a novel risk gene. Stridh P; Ruhrmann S; Bergman P; Thessén Hedreul M; Flytzani S; Beyeen AD; Gillett A; Krivosija N; Öckinger J; Ferguson-Smith AC; Jagodic M PLoS Genet; 2014 Mar; 10(3):e1004265. PubMed ID: 24676147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]