These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35912553)
21. MiR-125a-5p Regulates Vitamin D Receptor Expression in a Mouse Model of Experimental Autoimmune Encephalomyelitis. Long HC; Wu R; Liu CF; Xiong FL; Xu Z; He D; Zhang YF; Shao B; Zhang PA; Xu GY; Chu L Neurosci Bull; 2020 Feb; 36(2):110-120. PubMed ID: 31428926 [TBL] [Abstract][Full Text] [Related]
22. Chronic mild stress exacerbates severity of experimental autoimmune encephalomyelitis in association with altered non-coding RNA and metabolic biomarkers. Gerrard B; Singh V; Babenko O; Gauthier I; Wee Yong V; Kovalchuk I; Luczak A; Metz GAS Neuroscience; 2017 Sep; 359():299-307. PubMed ID: 28739526 [TBL] [Abstract][Full Text] [Related]
23. MicroRNA let-7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis. Guan H; Fan D; Mrelashvili D; Hao H; Singh NP; Singh UP; Nagarkatti PS; Nagarkatti M Eur J Immunol; 2013 Jan; 43(1):104-14. PubMed ID: 23079871 [TBL] [Abstract][Full Text] [Related]
24. [MiRNAs: new actors in the physiopathology of multiple sclerosis]. Jagot F; Davoust N Med Sci (Paris); 2017; 33(6-7):620-628. PubMed ID: 28990564 [TBL] [Abstract][Full Text] [Related]
25. Imprinted Genes and Multiple Sclerosis: What Do We Know? Baulina N; Kiselev I; Favorova O Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572862 [TBL] [Abstract][Full Text] [Related]
26. Gene Expression in Spontaneous Experimental Autoimmune Encephalomyelitis Is Linked to Human Multiple Sclerosis Risk Genes. Faber H; Kurtoic D; Krishnamoorthy G; Weber P; Pütz B; Müller-Myhsok B; Weber F; Andlauer TFM Front Immunol; 2020; 11():2165. PubMed ID: 33072080 [TBL] [Abstract][Full Text] [Related]
27. Immunoglobulins treatment in multiple sclerosis and experimental autoimmune encephalomyelitis. Achiron A; Miron S Mult Scler; 2000 Oct; 6 Suppl 2():S6-8; discussion S33. PubMed ID: 11188777 [TBL] [Abstract][Full Text] [Related]
28. Targeting vascular changes in lesions in multiple sclerosis and experimental autoimmune encephalomyelitis. Karlik SJ; Roscoe WA; Patinote C; Contino-Pepin C Cent Nerv Syst Agents Med Chem; 2012 Mar; 12(1):7-14. PubMed ID: 22280405 [TBL] [Abstract][Full Text] [Related]
29. Immune modulation by a tolerogenic myelin oligodendrocyte glycoprotein (MOG)10-60 containing fusion protein in the marmoset experimental autoimmune encephalomyelitis model. Kap YS; van Driel N; Arends R; Rouwendal G; Verolin M; Blezer E; Lycke N; 't Hart BA Clin Exp Immunol; 2015 Apr; 180(1):28-39. PubMed ID: 25393803 [TBL] [Abstract][Full Text] [Related]
30. Complexity of trophic factor signaling in experimental autoimmune encephalomyelitis: differential expression of neurotrophic and gliotrophic factors. Song F; Bandara M; Deol H; Loeb JA; Benjamins J; Lisak RP J Neuroimmunol; 2013 Sep; 262(1-2):11-8. PubMed ID: 23763772 [TBL] [Abstract][Full Text] [Related]
31. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. Natarajan C; Bright JJ J Immunol; 2002 Jun; 168(12):6506-13. PubMed ID: 12055272 [TBL] [Abstract][Full Text] [Related]
32. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Constantinescu CS; Farooqi N; O'Brien K; Gran B Br J Pharmacol; 2011 Oct; 164(4):1079-106. PubMed ID: 21371012 [TBL] [Abstract][Full Text] [Related]
33. miR-142-3p Is a Key Regulator of IL-1β-Dependent Synaptopathy in Neuroinflammation. Mandolesi G; De Vito F; Musella A; Gentile A; Bullitta S; Fresegna D; Sepman H; Di Sanza C; Haji N; Mori F; Buttari F; Perlas E; Ciotti MT; Hornstein E; Bozzoni I; Presutti C; Centonze D J Neurosci; 2017 Jan; 37(3):546-561. PubMed ID: 28100738 [TBL] [Abstract][Full Text] [Related]
35. miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORγt and STAT3. Zhu E; Wang X; Zheng B; Wang Q; Hao J; Chen S; Zhao Q; Zhao L; Wu Z; Yin Z J Immunol; 2014 Jun; 192(12):5599-609. PubMed ID: 24842756 [TBL] [Abstract][Full Text] [Related]
36. Therapeutic potentials of the Rho kinase inhibitor Fasudil in experimental autoimmune encephalomyelitis and the related mechanisms. Yan Y; Yu J; Gao Y; Kumar G; Guo M; Zhao Y; Fang Q; Zhang H; Yu J; Jiang Y; Zhang HT; Ma CG Metab Brain Dis; 2019 Apr; 34(2):377-384. PubMed ID: 30552558 [TBL] [Abstract][Full Text] [Related]
37. Male-specific coordinated changes in expression of miRNA genes, but not other genes within the DLK1-DIO3 locus in multiple sclerosis. Baulina N; Kiselev I; Kozin M; Kabaeva A; Boyko A; Favorova O Gene; 2022 Aug; 836():146676. PubMed ID: 35714798 [TBL] [Abstract][Full Text] [Related]
38. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Robinson AP; Harp CT; Noronha A; Miller SD Handb Clin Neurol; 2014; 122():173-89. PubMed ID: 24507518 [TBL] [Abstract][Full Text] [Related]
39. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Du C; Liu C; Kang J; Zhao G; Ye Z; Huang S; Li Z; Wu Z; Pei G Nat Immunol; 2009 Dec; 10(12):1252-9. PubMed ID: 19838199 [TBL] [Abstract][Full Text] [Related]
40. Genetics of experimental allergic encephalomyelitis supports the role of T helper cells in multiple sclerosis pathogenesis. Blankenhorn EP; Butterfield R; Case LK; Wall EH; del Rio R; Diehl SA; Krementsov DN; Saligrama N; Teuscher C Ann Neurol; 2011 Dec; 70(6):887-96. PubMed ID: 22190363 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]