BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35912692)

  • 41. Direct comparison of two actigraphy devices with polysomnographically recorded naps in healthy young adults.
    Cellini N; Buman MP; McDevitt EA; Ricker AA; Mednick SC
    Chronobiol Int; 2013 Jun; 30(5):691-8. PubMed ID: 23721120
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disrupted sleep predicts next day agitation following moderate to severe brain injury.
    Draganich C; Gerber D; Monden KR; Newman J; Weintraub A; Biggs J; Philippus A; Makley M
    Brain Inj; 2019; 33(9):1194-1199. PubMed ID: 31215813
    [No Abstract]   [Full Text] [Related]  

  • 43. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography.
    Roberts DM; Schade MM; Mathew GM; Gartenberg D; Buxton OM
    Sleep; 2020 Jul; 43(7):. PubMed ID: 32215550
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy.
    Li X; Zhang Y; Jiang F; Zhao H
    Chronobiol Int; 2020 Jul; 37(7):1002-1015. PubMed ID: 32342702
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of actigraphy and polysomnography to assess effects of zolpidem in a clinical research unit.
    Peterson BT; Chiao P; Pickering E; Freeman J; Zammit GK; Ding Y; Badura LL
    Sleep Med; 2012 Apr; 13(4):419-24. PubMed ID: 22317945
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wrist actigraphic scoring for sleep laboratory patients: algorithm development.
    Kripke DF; Hahn EK; Grizas AP; Wadiak KH; Loving RT; Poceta JS; Shadan FF; Cronin JW; Kline LE
    J Sleep Res; 2010 Dec; 19(4):612-9. PubMed ID: 20408923
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sleep-wake parameters can be detected in patients with chronic stroke using a multisensor accelerometer: a validation study.
    Gottlieb E; Churilov L; Werden E; Churchward T; Pase MP; Egorova N; Howard ME; Brodtmann A
    J Clin Sleep Med; 2021 Feb; 17(2):167-175. PubMed ID: 32975195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validity, potential clinical utility, and comparison of consumer and research-grade activity trackers in Insomnia Disorder I: In-lab validation against polysomnography.
    Kahawage P; Jumabhoy R; Hamill K; de Zambotti M; Drummond SPA
    J Sleep Res; 2020 Feb; 29(1):e12931. PubMed ID: 31626361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers.
    Kang SG; Kang JM; Ko KP; Park SC; Mariani S; Weng J
    J Psychosom Res; 2017 Jun; 97():38-44. PubMed ID: 28606497
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Poor agreement between actigraphy and polysomnography for assessing sleep during post-traumatic amnesia.
    Kawada T
    J Clin Sleep Med; 2023 Jan; 19(1):201. PubMed ID: 36123950
    [No Abstract]   [Full Text] [Related]  

  • 51. Validation of actigraphy sleep metrics in children aged 8 to 16 years: considerations for device type, placement and algorithms.
    Meredith-Jones KA; Haszard JJ; Graham-DeMello A; Campbell A; Stewart T; Galland BC; Cox A; Kennedy G; Duncan S; Taylor RW
    Int J Behav Nutr Phys Act; 2024 Apr; 21(1):40. PubMed ID: 38627708
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel approach using actigraphy to quantify the level of disruption of sleep by in-home polysomnography: the MrOS Sleep Study: Sleep disruption by polysomnography.
    Blackwell T; Paudel M; Redline S; Ancoli-Israel S; Stone KL;
    Sleep Med; 2017 Apr; 32():97-104. PubMed ID: 28366349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Sleep of the Ring: Comparison of the ŌURA Sleep Tracker Against Polysomnography.
    de Zambotti M; Rosas L; Colrain IM; Baker FC
    Behav Sleep Med; 2019; 17(2):124-136. PubMed ID: 28323455
    [No Abstract]   [Full Text] [Related]  

  • 54. Validation of midsagittal jaw movements to measure sleep in healthy adults by comparison with actigraphy and polysomnography.
    Chakar B; Senny F; Poirrier AL; Cambron L; Fanielle J; Poirrier R
    Sleep Sci; 2017; 10(3):122-127. PubMed ID: 29410741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of actigraphy with polysomnography and sleep logs in depressed insomniacs.
    McCall C; McCall WV
    J Sleep Res; 2012 Feb; 21(1):122-7. PubMed ID: 21447050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Validation of a nonwearable device in healthy adults with normal and short sleep durations.
    Hsiou DA; Gao C; Matlock RC; Scullin MK
    J Clin Sleep Med; 2022 Mar; 18(3):751-757. PubMed ID: 34608858
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A pilot study of shoulder placement for actigraphy in children.
    Adkins KW; Goldman SE; Fawkes D; Surdyka K; Wang L; Song Y; Malow BA
    Behav Sleep Med; 2012; 10(2):138-47. PubMed ID: 22468931
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing sleep disturbance in low back pain: the validity of portable instruments.
    Alsaadi SM; McAuley JH; Hush JM; Bartlett DJ; McKeough ZM; Grunstein RR; Dungan GC; Maher CG
    PLoS One; 2014; 9(4):e95824. PubMed ID: 24763506
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polysomnography and actigraphy concordance in juvenile idiopathic arthritis, asthma and healthy children.
    Ward TM; Lentz M; Kieckhefer GM; Landis CA
    J Sleep Res; 2012 Feb; 21(1):113-21. PubMed ID: 21592248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The feasibility and reliability of actigraphy to monitor sleep in intensive care patients: an observational study.
    Delaney LJ; Litton E; Melehan KL; Huang HC; Lopez V; Van Haren F
    Crit Care; 2021 Jan; 25(1):42. PubMed ID: 33514414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.