These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 35912988)

  • 41. The tubular hypothesis of nephron filtration and diabetic kidney disease.
    Vallon V; Thomson SC
    Nat Rev Nephrol; 2020 Jun; 16(6):317-336. PubMed ID: 32152499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnesium transport in the nephron.
    Quamme GA; Dirks JH
    Am J Physiol; 1980 Nov; 239(5):F393-401. PubMed ID: 7435614
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epidermal growth factor binding, stimulation of phosphorylation, and inhibition of gluconeogenesis in rat proximal tubule.
    Harris RC; Daniel TO
    J Cell Physiol; 1989 May; 139(2):383-91. PubMed ID: 2785525
    [TBL] [Abstract][Full Text] [Related]  

  • 44. De novo expression of sodium-glucose cotransporter SGLT2 in Bowman's capsule coincides with replacement of parietal epithelial cell layer with proximal tubule-like epithelium.
    Tabatabai NM; North PE; Regner KR; Kumar SN; Duris CB; Blodgett AB
    J Membr Biol; 2014 Aug; 247(8):675-83. PubMed ID: 24906870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Early enhancement of fluid transport in rabbit proximal straight tubules after loss of contralateral renal excretory function.
    Tabei K; Levenson DJ; Brenner BM
    J Clin Invest; 1983 Sep; 72(3):871-81. PubMed ID: 6886008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micropuncture studies of glucose transport in the dog: mechanism of renal glycosuria.
    Wen SF
    Am J Physiol; 1976 Aug; 231(2):468-75. PubMed ID: 961899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis.
    Li Q; McDonough AA; Layton HE; Layton AT
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F692-F700. PubMed ID: 29846110
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Renal tubular function in the gravid rat.
    Atherton JC; Green R
    Baillieres Clin Obstet Gynaecol; 1994 Jun; 8(2):265-85. PubMed ID: 7924008
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review.
    Pereira-Moreira R; Muscelli E
    J Diabetes Res; 2020; 2020():8492467. PubMed ID: 32377524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional profile of the isolated uremic nephron. Role of compensatory hypertrophy in the control of fluid reabsorption by the proximal straight tubule.
    Fine LG; Trizna W; Bourgoignie JJ; Bricker NS
    J Clin Invest; 1978 Jun; 61(6):1508-18. PubMed ID: 659612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A mathematical model of the rat proximal tubule.
    Weinstein AM
    Am J Physiol; 1986 May; 250(5 Pt 2):F860-73. PubMed ID: 3706537
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Renal proximal tubular reabsorption is reduced in adult spontaneously hypertensive rats: roles of superoxide and Na+/H+ exchanger 3.
    Panico C; Luo Z; Damiano S; Artigiano F; Gill P; Welch WJ
    Hypertension; 2009 Dec; 54(6):1291-7. PubMed ID: 19805644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Control of proximal bicarbonate reabsorption in normal and acidotic rats.
    Cogan MG; Maddox DA; Lucci MS; Rector FC
    J Clin Invest; 1979 Nov; 64(5):1168-80. PubMed ID: 500804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective.
    Silva Dos Santos D; Polidoro JZ; Borges-Júnior FA; Girardi ACC
    Am J Physiol Cell Physiol; 2020 Feb; 318(2):C328-C336. PubMed ID: 31721613
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tubular reabsorption of myo-inositol vs. that of D-glucose in rat kidney in vivo et situ.
    Silbernagl S; Völker K; Dantzler WH
    Am J Physiol Renal Physiol; 2003 Jun; 284(6):F1181-9. PubMed ID: 12736166
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications.
    Gerich JE
    Diabet Med; 2010 Feb; 27(2):136-42. PubMed ID: 20546255
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of glucose on water and sodium reabsorption in the proximal convoluted tubule of rat kidney.
    Bishop JH; Green R; Thomas S
    J Physiol; 1978 Feb; 275():481-93. PubMed ID: 633143
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The early proximal tubule: a high-capacity delivery-responsive reabsorptive site.
    Maddox DA; Gennari FJ
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F573-84. PubMed ID: 3551629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia.
    Rieg T; Masuda T; Gerasimova M; Mayoux E; Platt K; Powell DR; Thomson SC; Koepsell H; Vallon V
    Am J Physiol Renal Physiol; 2014 Jan; 306(2):F188-93. PubMed ID: 24226519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A mathematical model of rat proximal tubule and loop of Henle.
    Weinstein AM
    Am J Physiol Renal Physiol; 2015 May; 308(10):F1076-97. PubMed ID: 25694479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.